
On Welfare-Centric Fair Reinforcement Learning

Cyrus Cousins Elita Lobo Kavosh Asadi Michael Littman

www.cyruscousins.online/projects/rlfairness/
1/13

https://www.cyruscousins.online/projects/rlfairness/home.html

2/13

What is Group-Fair Reinforcement Learning?
I Agent A in world receives vector-valued reward R(s, a) ∈ Rg from g beneficiaries

I Beneficiaries represent impacted parties: Individuals, entities, groups, etc.
I Reward encodes their response to A- interactions

I Optimize not the value of what A wants, but the welfare of beneficiary value functions

STARSTAR STARSTAR STARSTAR

💩

💩

💩

💩

💩

💩STARSTAR 💩

💩STARSTAR

STARSTAR💩💩 STARSTAR

💩

💩

💩

💩

💩

💩

A

N

E

S

W

Objective:

argmax
π∈Π

W

(
i 7→ E

π,s

[∞∑
t=0

γtRi(st , π(st))︸ ︷︷ ︸
Geometrically discounted reward

∣∣∣∣ s0]
)

2/13

What is Group-Fair Reinforcement Learning?
I Agent A in world receives vector-valued reward R(s, a) ∈ Rg from g beneficiaries

I Beneficiaries represent impacted parties: Individuals, entities, groups, etc.
I Reward encodes their response to A- interactions

I Optimize not the value of what A wants, but the welfare of beneficiary value functions

STARSTAR STARSTAR STARSTAR

💩

💩

💩

💩

💩

💩STARSTAR 💩

💩STARSTAR

STARSTAR💩💩 STARSTAR

💩

💩

💩

💩

💩

💩

A

N

E

S

W

User Yes! +3
User No! −2
User Maybe! +0

Objective:

argmax
π∈Π

W

(
i 7→ E

π,s

[∞∑
t=0

γtRi(st , π(st))︸ ︷︷ ︸
Geometrically discounted reward

∣∣∣∣ s0]
)

2/13

What is Group-Fair Reinforcement Learning?
I Agent A in world receives vector-valued reward R(s, a) ∈ Rg from g beneficiaries

I Beneficiaries represent impacted parties: Individuals, entities, groups, etc.
I Reward encodes their response to A- interactions

I Optimize not the value of what A wants, but the welfare of beneficiary value functions

STARSTAR STARSTAR STARSTAR

💩

💩

💩

💩

💩

💩STARSTAR 💩

💩STARSTAR

STARSTAR💩💩 STARSTAR

💩

💩

💩

💩

💩

💩

A

N

E

S

W

User Yes! +3
User No! −2
User Maybe! +0

Objective:

argmax
π∈Π

W

(
i 7→ E

π,s

[∞∑
t=0

γtRi(st , π(st))︸ ︷︷ ︸
Geometrically discounted reward

∣∣∣∣ s0]
)

3/13

Reject Egocentricsm
Egocentric Viewpoint

I A acts in , and responds
I Scalar reward R(s, a) is intrinsic to A
I Rational agents selfishly optimize value

argmax
π∈Π

E
π,s

[∞∑
t=0

γtR(st , π(st))

∣∣∣∣ s0]

Altruistic Viewpoint

I A’s actions in impact beneficiaries
I Vector reward R(s, a) quantifies impact
I Altruistic agents optimize societal welfare

argmax
π∈Π

W

(
i 7→ E

π,s

[∞∑
t=0

γtRi(st , π(st))

∣∣∣∣ s0]
)

3/13

Reject Egocentricsm
Egocentric Viewpoint

I A acts in , and responds
I Scalar reward R(s, a) is intrinsic to A
I Rational agents selfishly optimize value

argmax
π∈Π

E
π,s

[∞∑
t=0

γtR(st , π(st))

∣∣∣∣ s0]

Altruistic Viewpoint

I A’s actions in impact beneficiaries
I Vector reward R(s, a) quantifies impact
I Altruistic agents optimize societal welfare

argmax
π∈Π

W

(
i 7→ E

π,s

[∞∑
t=0

γtRi(st , π(st))

∣∣∣∣ s0]
)

4/13

What is a Welfare Function?

I Given g beneficiaries
I Utility (value) vector v ∈ Rg

0+

v =
〈
STARSTARSTAR,STARSTAR-HALF-ALT,STAR

〉

I W(v) : Rg
0+ → R0+ aggregates utility

across beneficiaries
I Welfare functions encode social values

I Common welfare functions

I Utilitarian: W1(v)
.
=

1

g

g∑
i=1

vi

I Egalitarian: W−∞(v) .
= min

i∈1,...,g
vi

I p Power-Mean: Wp(v)
.
= p

√√√√1

g

g∑
i=1

vp
i

4/13

What is a Welfare Function?

I Given g beneficiaries
I Utility (value) vector v ∈ Rg

0+

v =
〈
STARSTARSTAR,STARSTAR-HALF-ALT,STAR

〉
I W(v) : Rg

0+ → R0+ aggregates utility
across beneficiaries
I Welfare functions encode social values

I Common welfare functions

I Utilitarian: W1(v)
.
=

1

g

g∑
i=1

vi

I Egalitarian: W−∞(v) .
= min

i∈1,...,g
vi

I p Power-Mean: Wp(v)
.
= p

√√√√1

g

g∑
i=1

vp
i

4/13

What is a Welfare Function?

I Given g beneficiaries
I Utility (value) vector v ∈ Rg

0+

v =
〈
STARSTARSTAR,STARSTAR-HALF-ALT,STAR

〉
I W(v) : Rg

0+ → R0+ aggregates utility
across beneficiaries
I Welfare functions encode social values

I Common welfare functions

I Utilitarian: W1(v)
.
=

1

g

g∑
i=1

vi

I Egalitarian: W−∞(v) .
= min

i∈1,...,g
vi

I p Power-Mean: Wp(v)
.
= p

√√√√1

g

g∑
i=1

vp
i

5/13

Even Bandits are Tricky!
“Compromise” 3-Armed Bandit

s1

R(s1, a1) = 〈1, 0〉 R(s1, a2) = 〈0, 1〉

R(s1, a3) = 〈23 ,
2
3
〉

π1 = 〈1, 0, 0〉
π2 = 〈0, 1, 0〉
π? = 〈0, 0, 1〉

Beneficiary policies π1 and π2 and
fair policy π? are completely disjoint!

If γ ≥ 1
2 : Egalitarian policy iteration oscillates indefinitely

π(t+1) ← argmax
π∈ΠM

W−∞

(
i 7→ E

π,s1

[
Ri(s0, π(s0)) + γVπ(t)

i (s1)
])

π(s) = 〈1, 0, 0〉
Vπ(s) = 〈 1

1−γ
, 0〉

π(s) = 〈0, 1, 0〉
Vπ(s) = 〈0, 1

1−γ
〉

π?(s) = 〈0, 0, 1〉
Vπ?

(s) = 〈 2/3
1−γ

, 2/3
1−γ
〉

5/13

Even Bandits are Tricky!
“Compromise” 3-Armed Bandit

s1

R(s1, a1) = 〈1, 0〉 R(s1, a2) = 〈0, 1〉

R(s1, a3) = 〈23 ,
2
3
〉

π1 = 〈1, 0, 0〉
π2 = 〈0, 1, 0〉
π? = 〈0, 0, 1〉

Beneficiary policies π1 and π2 and
fair policy π? are completely disjoint!

If γ ≥ 1
2 : Egalitarian policy iteration oscillates indefinitely

π(t+1) ← argmax
π∈ΠM

W−∞

(
i 7→ E

π,s1

[
Ri(s0, π(s0)) + γVπ(t)

i (s1)
])

π(s) = 〈1, 0, 0〉
Vπ(s) = 〈 1

1−γ
, 0〉

π(s) = 〈0, 1, 0〉
Vπ(s) = 〈0, 1

1−γ
〉

π?(s) = 〈0, 0, 1〉
Vπ?

(s) = 〈 2/3
1−γ

, 2/3
1−γ
〉

5/13

Even Bandits are Tricky!
“Compromise” 3-Armed Bandit

s1

R(s1, a1) = 〈1, 0〉 R(s1, a2) = 〈0, 1〉

R(s1, a3) = 〈23 ,
2
3
〉

π1 = 〈1, 0, 0〉
π2 = 〈0, 1, 0〉
π? = 〈0, 0, 1〉

Beneficiary policies π1 and π2 and
fair policy π? are completely disjoint!

If γ ≥ 1
2 : Egalitarian policy iteration oscillates indefinitely

π(t+1) ← argmax
π∈ΠM

W−∞

(
i 7→ E

π,s1

[
Ri(s0, π(s0)) + γVπ(t)

i (s1)
])

π(s) = 〈1, 0, 0〉
Vπ(s) = 〈 1

1−γ
, 0〉

π(s) = 〈0, 1, 0〉
Vπ(s) = 〈0, 1

1−γ
〉

π?(s) = 〈0, 0, 1〉
Vπ?

(s) = 〈 2/3
1−γ

, 2/3
1−γ
〉

5/13

Even Bandits are Tricky!
“Compromise” 3-Armed Bandit

s1

R(s1, a1) = 〈1, 0〉 R(s1, a2) = 〈0, 1〉

R(s1, a3) = 〈23 ,
2
3
〉

π1 = 〈1, 0, 0〉
π2 = 〈0, 1, 0〉
π? = 〈0, 0, 1〉

Beneficiary policies π1 and π2 and
fair policy π? are completely disjoint!

If γ ≥ 1
2 : Egalitarian policy iteration oscillates indefinitely

π(t+1) ← argmax
π∈ΠM

W−∞

(
i 7→ E

π,s1

[
Ri(s0, π(s0)) + γVπ(t)

i (s1)
])

π(s) = 〈1, 0, 0〉
Vπ(s) = 〈 1

1−γ
, 0〉

π(s) = 〈0, 1, 0〉
Vπ(s) = 〈0, 1

1−γ
〉

π?(s) = 〈0, 0, 1〉
Vπ?

(s) = 〈 2/3
1−γ

, 2/3
1−γ
〉

6/13

Overcoming Initial Disparity

“Asymmetric Start Bandit” MDP

s1

R(s1, a1) = 〈1, 0〉 R(s1, a2) = 〈0, 1〉

s2 s3
R(

s 2,
·)=
〈c,
0〉 R

(s
3 , ·)=〈0, c〉

π1(s1) = 〈1, 0〉
π2(s1) = 〈0, 1〉

π?(s1 from s2) = 〈12 −
1−γ
2γ

c, 1
2
+ 1−γ

2γ
c〉

π?(s1 from s3) = 〈12 +
1−γ
2γ

c, 1
2
− 1−γ

2γ
c〉

Fair policy π? is start-state dependent!

Lemma (Optimality of Stationary Policies)

For any start state s0 ∈ S, there exists some W(·)-optimal policy

π? ∈ argmax
π∈ΠM

W
(

Vπ
1 (s0), . . . ,Vπ

g (s0)
)

that is a stationary (Markovian) stochastic policy

6/13

Overcoming Initial Disparity

“Asymmetric Start Bandit” MDP

s1

R(s1, a1) = 〈1, 0〉 R(s1, a2) = 〈0, 1〉

s2 s3
R(

s 2,
·)=
〈c,
0〉 R

(s
3 , ·)=〈0, c〉

π1(s1) = 〈1, 0〉
π2(s1) = 〈0, 1〉

π?(s1 from s2) = 〈12 −
1−γ
2γ

c, 1
2
+ 1−γ

2γ
c〉

π?(s1 from s3) = 〈12 +
1−γ
2γ

c, 1
2
− 1−γ

2γ
c〉

Fair policy π? is start-state dependent!

Lemma (Optimality of Stationary Policies)

For any start state s0 ∈ S, there exists some W(·)-optimal policy

π? ∈ argmax
π∈ΠM

W
(

Vπ
1 (s0), . . . ,Vπ

g (s0)
)

that is a stationary (Markovian) stochastic policy

6/13

Overcoming Initial Disparity

“Asymmetric Start Bandit” MDP

s1

R(s1, a1) = 〈1, 0〉 R(s1, a2) = 〈0, 1〉

s2 s3
R(

s 2,
·)=
〈c,
0〉 R

(s
3 , ·)=〈0, c〉

π1(s1) = 〈1, 0〉
π2(s1) = 〈0, 1〉

π?(s1 from s2) = 〈12 −
1−γ
2γ

c, 1
2
+ 1−γ

2γ
c〉

π?(s1 from s3) = 〈12 +
1−γ
2γ

c, 1
2
− 1−γ

2γ
c〉

Fair policy π? is start-state dependent!

Lemma (Optimality of Stationary Policies)

For any start state s0 ∈ S, there exists some W(·)-optimal policy

π? ∈ argmax
π∈ΠM

W
(

Vπ
1 (s0), . . . ,Vπ

g (s0)
)

that is a stationary (Markovian) stochastic policy

7/13

On Planning
I Policy Iteration

7 Nonconvergent; can oscillate indefinitely

I Value Iteration
I With what Bellman operator?

Many obstacles here:
7 Beneficiaries each have their own value function V1:g, but not their own policy π
7 No greedy-optimal substructure (start-state dependence)

Planning with geometrically-discounted state-action occupancy frequencies

d? = argmax
d∈RS×A

0+

W

(∑
s∈S,a∈A

ds,aR1(s, a),
∑

s∈S,a∈A

ds,aR2(s, a), . . . ,
∑

s∈S,a∈A

ds,aRg(s, a)
)

such that ∀s ∈ S :
∑
a∈A

ds,a = ps + γ
∑

s′∈S,a′∈A

Ps(s′, a′)ds′,a′ ,

Take π?(s, a) ∝ d?
s,a for all s ∈ S, a ∈ A

3 Approximately optimize π? with convex programming

7/13

On Planning
I Policy Iteration

7 Nonconvergent; can oscillate indefinitely
I Value Iteration

I With what Bellman operator?
Many obstacles here:
7 Beneficiaries each have their own value function V1:g, but not their own policy π
7 No greedy-optimal substructure (start-state dependence)

Planning with geometrically-discounted state-action occupancy frequencies

d? = argmax
d∈RS×A

0+

W

(∑
s∈S,a∈A

ds,aR1(s, a),
∑

s∈S,a∈A

ds,aR2(s, a), . . . ,
∑

s∈S,a∈A

ds,aRg(s, a)
)

such that ∀s ∈ S :
∑
a∈A

ds,a = ps + γ
∑

s′∈S,a′∈A

Ps(s′, a′)ds′,a′ ,

Take π?(s, a) ∝ d?
s,a for all s ∈ S, a ∈ A

3 Approximately optimize π? with convex programming

7/13

On Planning
I Policy Iteration

7 Nonconvergent; can oscillate indefinitely
I Value Iteration

I With what Bellman operator?
Many obstacles here:
7 Beneficiaries each have their own value function V1:g, but not their own policy π
7 No greedy-optimal substructure (start-state dependence)

Planning with geometrically-discounted state-action occupancy frequencies

d? = argmax
d∈RS×A

0+

W

(∑
s∈S,a∈A

ds,aR1(s, a),
∑

s∈S,a∈A

ds,aR2(s, a), . . . ,
∑

s∈S,a∈A

ds,aRg(s, a)
)

such that ∀s ∈ S :
∑
a∈A

ds,a = ps + γ
∑

s′∈S,a′∈A

Ps(s′, a′)ds′,a′ ,

Take π?(s, a) ∝ d?
s,a for all s ∈ S, a ∈ A

3 Approximately optimize π? with convex programming

8/13

Regret and Mistakes

I Optimal policy is stochastic, can’t assess individual actions

Assess regret of welfare of agent policies π̂1, . . . , π̂T

Regret(T) =

T∑
t=1

(
W
(
Vπ?

t (st)
)
−W

(
Vπ̂t (st)

))

I When should we evaluate the agent?
7 Incoherent to take st+1 ∼ π̂t(st)

I Geometric discounting suggests geometric episode length
I Unfair to execute each π̂t(st) (start-state dependence)

? Episodic: End episode, draw st+1 from start-state distribution

I A policy π̂ is a mistake at s if W
(
Vπ?

s (s)
)
−W

(
Vπ̂(s)

)
> ε

7 Exploration actions are probably mistakes
? Can exploitation confidently avoid mistakes?

8/13

Regret and Mistakes

I Optimal policy is stochastic, can’t assess individual actions

Assess regret of welfare of agent policies π̂1, . . . , π̂T

Regret(T) =

T∑
t=1

(
W
(
Vπ?

t (st)
)
−W

(
Vπ̂t (st)

))
I When should we evaluate the agent?

7 Incoherent to take st+1 ∼ π̂t(st)

I Geometric discounting suggests geometric episode length
I Unfair to execute each π̂t(st) (start-state dependence)

? Episodic: End episode, draw st+1 from start-state distribution

I A policy π̂ is a mistake at s if W
(
Vπ?

s (s)
)
−W

(
Vπ̂(s)

)
> ε

7 Exploration actions are probably mistakes
? Can exploitation confidently avoid mistakes?

8/13

Regret and Mistakes

I Optimal policy is stochastic, can’t assess individual actions

Assess regret of welfare of agent policies π̂1, . . . , π̂T

Regret(T) =

T∑
t=1

(
W
(
Vπ?

t (st)
)
−W

(
Vπ̂t (st)

))
I When should we evaluate the agent?

7 Incoherent to take st+1 ∼ π̂t(st)

I Geometric discounting suggests geometric episode length
I Unfair to execute each π̂t(st) (start-state dependence)

? Episodic: End episode, draw st+1 from start-state distribution

I A policy π̂ is a mistake at s if W
(
Vπ?

s (s)
)
−W

(
Vπ̂(s)

)
> ε

7 Exploration actions are probably mistakes
? Can exploitation confidently avoid mistakes?

9/13

Learning Model: KWIK-AF

The KWIK-AF Learner

Know-What-It-Knows Adversarial-Fair
I KWIK Learner: At each step, in state s, A can either

1. Output an ε-optimal exploitation policy πxpt

7 With probability at least 1− δ, for all time
7 No mistakes: W

(
Vπ?

s (s)
)
−W

(
Vπxpt(s)

)
> ε

2. Output an exploration action a
3 Receive (s, a, r , s′) tuple, return control to agent in s′
7 Limited budget: Only m

(
|S| ,|A| , γ,Rmax, g, ε, δ

)
exploration actions

I Adversarial-Fair: A must be flexible and robust
I Optimize adversarially selected welfare function Wt(·) at each step
I When A outputs a policy πxpt:

Move A to adversarial s′, provide no feedback!

9/13

Learning Model: KWIK-AF

The KWIK-AF Learner

Know-What-It-Knows Adversarial-Fair
I KWIK Learner: At each step, in state s, A can either

1. Output an ε-optimal exploitation policy πxpt

7 With probability at least 1− δ, for all time
7 No mistakes: W

(
Vπ?

s (s)
)
−W

(
Vπxpt(s)

)
> ε

2. Output an exploration action a
3 Receive (s, a, r , s′) tuple, return control to agent in s′
7 Limited budget: Only m

(
|S| ,|A| , γ,Rmax, g, ε, δ

)
exploration actions

I Adversarial-Fair: A must be flexible and robust
I Optimize adversarially selected welfare function Wt(·) at each step
I When A outputs a policy πxpt:

Move A to adversarial s′, provide no feedback!

Don't make a mistake.Don't make a mistake.

You may ask a few questionsYou may ask a few questions

— but you must learn KWIK.— but you must learn KWIK.

10/13

11/13

E4: The Equitable Explicit Explore Exploit Algorithm

I Partition state space into three sets: Sunk, Sout, Sinn
I Unknown Sunk: Insufficient samples (≤ mknw) to

estimate reward R(s, a) and transition P(s)

I Outer-Known Sout: Some escape policy πesc can
reach Sunk in T steps with probability at least E

I Inner-Known Sinn: No policy can reach Sunk in T
steps with probability at least E

I Learning moves states from Sunk → Sout → Sinn

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

S16

S17

S18

S19

S20

S21S22
S23

S24

S25

S26

S27

S28

S29

S30
S31 S32

S33

S34

S35

A

Sinn Sout Sunk

∼ The E4 Algorithm ∼
1. If in Sunk: Explore, observe (s, a, r , s′),

update empirical MDP M̂, update Sunk,Sout,Sinn
2. If in Sout: Begin escape attempt (follow πesc for T steps)

πesc ← argmax
π∈ΠT

∑
s∈S

P
st+1∼P̂(st ,π(st ,t))

(T∨
i=0

si ∈ Sunk

∣∣∣s0 = s
)

3. Otherwise in Sinn: Output exploit policy πxpt ← argmax
π∈ΠM

W
(

V̂π(s)
)

11/13

E4: The Equitable Explicit Explore Exploit Algorithm

I Partition state space into three sets: Sunk, Sout, Sinn
I Unknown Sunk: Insufficient samples (≤ mknw) to

estimate reward R(s, a) and transition P(s)
I Outer-Known Sout: Some escape policy πesc can

reach Sunk in T steps with probability at least E

I Inner-Known Sinn: No policy can reach Sunk in T
steps with probability at least E

I Learning moves states from Sunk → Sout → Sinn

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

S16

S17

S18

S19

S20

S21S22
S23

S24

S25

S26

S27

S28

S29

S30
S31 S32

S33

S34

S35

A

Sinn Sout Sunk

∼ The E4 Algorithm ∼
1. If in Sunk: Explore, observe (s, a, r , s′),

update empirical MDP M̂, update Sunk,Sout,Sinn
2. If in Sout: Begin escape attempt (follow πesc for T steps)

πesc ← argmax
π∈ΠT

∑
s∈S

P
st+1∼P̂(st ,π(st ,t))

(T∨
i=0

si ∈ Sunk

∣∣∣s0 = s
)

3. Otherwise in Sinn: Output exploit policy πxpt ← argmax
π∈ΠM

W
(

V̂π(s)
)

11/13

E4: The Equitable Explicit Explore Exploit Algorithm

I Partition state space into three sets: Sunk, Sout, Sinn
I Unknown Sunk: Insufficient samples (≤ mknw) to

estimate reward R(s, a) and transition P(s)
I Outer-Known Sout: Some escape policy πesc can

reach Sunk in T steps with probability at least E
I Inner-Known Sinn: No policy can reach Sunk in T

steps with probability at least E

I Learning moves states from Sunk → Sout → Sinn

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

S16

S17

S18

S19

S20

S21S22
S23

S24

S25

S26

S27

S28

S29

S30
S31 S32

S33

S34

S35

A

Sinn Sout Sunk

∼ The E4 Algorithm ∼
1. If in Sunk: Explore, observe (s, a, r , s′),

update empirical MDP M̂, update Sunk,Sout,Sinn
2. If in Sout: Begin escape attempt (follow πesc for T steps)

πesc ← argmax
π∈ΠT

∑
s∈S

P
st+1∼P̂(st ,π(st ,t))

(T∨
i=0

si ∈ Sunk

∣∣∣s0 = s
)

3. Otherwise in Sinn: Output exploit policy πxpt ← argmax
π∈ΠM

W
(

V̂π(s)
)

11/13

E4: The Equitable Explicit Explore Exploit Algorithm

I Partition state space into three sets: Sunk, Sout, Sinn
I Unknown Sunk: Insufficient samples (≤ mknw) to

estimate reward R(s, a) and transition P(s)
I Outer-Known Sout: Some escape policy πesc can

reach Sunk in T steps with probability at least E
I Inner-Known Sinn: No policy can reach Sunk in T

steps with probability at least E
I Learning moves states from Sunk → Sout → Sinn

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

S16

S17

S18

S19

S20

S21S22
S23

S24

S25

S26

S27

S28

S29

S30
S31 S32

S33

S34

S35

A
A

S18

S6

Sinn Sout Sunk Update

∼ The E4 Algorithm ∼
1. If in Sunk: Explore, observe (s, a, r , s′),

update empirical MDP M̂, update Sunk,Sout,Sinn
2. If in Sout: Begin escape attempt (follow πesc for T steps)

πesc ← argmax
π∈ΠT

∑
s∈S

P
st+1∼P̂(st ,π(st ,t))

(T∨
i=0

si ∈ Sunk

∣∣∣s0 = s
)

3. Otherwise in Sinn: Output exploit policy πxpt ← argmax
π∈ΠM

W
(

V̂π(s)
)

11/13

E4: The Equitable Explicit Explore Exploit Algorithm

I Partition state space into three sets: Sunk, Sout, Sinn
I Unknown Sunk: Insufficient samples (≤ mknw) to

estimate reward R(s, a) and transition P(s)
I Outer-Known Sout: Some escape policy πesc can

reach Sunk in T steps with probability at least E
I Inner-Known Sinn: No policy can reach Sunk in T

steps with probability at least E
I Learning moves states from Sunk → Sout → Sinn

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

S16

S17

S18

S19

S20

S21S22
S23

S24

S25

S26

S27

S28

S29

S30
S31 S32

S33

S34

S35

A
A

S18

S6

Sinn Sout Sunk Update

∼ The E4 Algorithm ∼
1. If in Sunk: Explore, observe (s, a, r , s′),

update empirical MDP M̂, update Sunk,Sout,Sinn
2. If in Sout: Begin escape attempt (follow πesc for T steps)

πesc ← argmax
π∈ΠT

∑
s∈S

P
st+1∼P̂(st ,π(st ,t))

(T∨
i=0

si ∈ Sunk

∣∣∣s0 = s
)

3. Otherwise in Sinn: Output exploit policy πxpt ← argmax
π∈ΠM

W
(

V̂π(s)
)

12/13

E4 Theory

Lemma (Explore-Exploit)
At any point in the execution of E4, A can act effectively:

1. Can exploit from Sinn

2. Can explore directly from Sunk

3. Can explore indirectly from Sout (escape succeeds with some probability)

Theorem (E4 is a KWIK-AF Learner)

E4 is a KWIK-AF learner w.r.t. the class of all λ-‖·‖∞ Lipschitz-continuous welfare
functions, with exploration budget

m
(
|S| ,|A| , γ,Rmax, g, ε, δ

)
∈ O

(
|S|2|A|

(
λRmax
ε(1−γ) log 1

γ

(
λRmax
ε(1−γ)

))3
log |S||A|g

δ

)
⊆ Poly

(
|S| ,|A| , 1

1−γ ,Rmax, log g, 1ε , log 1
δ , λ
)

12/13

E4 Theory

Lemma (Explore-Exploit)
At any point in the execution of E4, A can act effectively:

1. Can exploit from Sinn

2. Can explore directly from Sunk

3. Can explore indirectly from Sout (escape succeeds with some probability)

Theorem (E4 is a KWIK-AF Learner)

E4 is a KWIK-AF learner w.r.t. the class of all λ-‖·‖∞ Lipschitz-continuous welfare
functions, with exploration budget

m
(
|S| ,|A| , γ,Rmax, g, ε, δ

)
∈ O

(
|S|2|A|

(
λRmax
ε(1−γ) log 1

γ

(
λRmax
ε(1−γ)

))3
log |S||A|g

δ

)
⊆ Poly

(
|S| ,|A| , 1

1−γ ,Rmax, log g, 1ε , log 1
δ , λ
)

13/13

In Summary

I From Egocentric to Altruistic Agents
I Agent A acts in , impacting beneficiaries
I Vector-valued (per-beneficiary) reward R(s, a)
I Social planner’s problem:
I Optimize welfare of value functions argmax

π∈Π
W
(
Vπ(s)

)

I KWIK-AF: A Model of Fair RL
I Adversarial flexibility
I Societal welfare objectives
I No mistakes from bounded exploration

I Efficient Learning and Planning
I KWIK-AF learn with E4

I Plan with convex programming on state-action measure
I Polynomial exploration budget, time complexity

13/13

In Summary

I From Egocentric to Altruistic Agents
I Agent A acts in , impacting beneficiaries
I Vector-valued (per-beneficiary) reward R(s, a)
I Social planner’s problem:
I Optimize welfare of value functions argmax

π∈Π
W
(
Vπ(s)

)
I KWIK-AF: A Model of Fair RL
I Adversarial flexibility
I Societal welfare objectives
I No mistakes from bounded exploration

I Efficient Learning and Planning
I KWIK-AF learn with E4

I Plan with convex programming on state-action measure
I Polynomial exploration budget, time complexity

13/13

In Summary

I From Egocentric to Altruistic Agents
I Agent A acts in , impacting beneficiaries
I Vector-valued (per-beneficiary) reward R(s, a)
I Social planner’s problem:
I Optimize welfare of value functions argmax

π∈Π
W
(
Vπ(s)

)
I KWIK-AF: A Model of Fair RL
I Adversarial flexibility
I Societal welfare objectives
I No mistakes from bounded exploration

I Efficient Learning and Planning
I KWIK-AF learn with E4

I Plan with convex programming on state-action measure
I Polynomial exploration budget, time complexity

	

