On Welfare-Centric Fair Reinforcement Learning

[www.cyruscousins.online/projects/rlfairness/](https://www.cyruscousins.online/projects/rlfairness/home.html)

What is Group-Fair Reinforcement Learning?

- Agent A in world \bigcirc receives vector-valued reward $\mathbf{R}(s, a) \in \mathbb{R}^g$ from g beneficiaries
	- \blacktriangleright Beneficiaries represent impacted parties: Individuals, entities, groups, etc.

2/13

 \triangleright Reward encodes their response to $A-\hat{C}$ interactions

What is Group-Fair Reinforcement Learning?

- Agent A in world \bigcirc receives vector-valued reward $\mathbf{R}(s, a) \in \mathbb{R}^g$ from g beneficiaries
	- \blacktriangleright Beneficiaries represent impacted parties: Individuals, entities, groups, etc.
	- \triangleright Reward encodes their response to $A-\hat{C}$ interactions

What is Group-Fair Reinforcement Learning?

- Agent A in world \bigcirc receives vector-valued reward $\mathbf{R}(s, a) \in \mathbb{R}^g$ from g beneficiaries
	- \triangleright Beneficiaries represent impacted parties: Individuals, entities, groups, etc.
	- \triangleright Reward encodes their response to $A-\hat{C}$ interactions

 \triangleright Optimize not the value of what A wants, but the welfare of beneficiary value functions

Reject Egocentricsm

Egocentric Viewpoint

- \triangleright A acts in \odot , and \odot responds
- \triangleright Scalar reward $R(s, a)$ is *intrinsic* to A
- \blacktriangleright Rational agents selfishly optimize value

$$
\underset{\pi \in \Pi}{\operatorname{argmax}} \mathop{\mathbb{E}}_{\pi, s} \left[\sum_{t=0}^{\infty} \gamma^t \mathop{\mathrm{R}}\nolimits(s_t, \pi(s_t)) \; \middle| \; s_0 \right]
$$

3/13

Reject Egocentricsm

Egocentric Viewpoint

- A acts in \odot , and \odot responds
- \triangleright Scalar reward $R(s, a)$ is *intrinsic* to A
- \blacktriangleright Rational agents selfishly optimize value

$$
\underset{\pi \in \Pi}{\operatorname{argmax}} \mathop{\mathbb{E}}_{\pi, s} \left[\sum_{t=0}^{\infty} \gamma^t \mathop{\mathrm{R}}\nolimits(s_t, \pi(s_t)) \; \middle| \; s_0 \right]
$$

Altruistic Viewpoint

- \blacktriangleright A's actions in \heartsuit impact beneficiaries
- \blacktriangleright Vector reward $\mathbf{R}(s, a)$ quantifies impact
- \blacktriangleright Altruistic agents optimize societal welfare

$$
\underset{\pi \in \Pi}{\operatorname{argmax}} \, \mathrm{W}\left(i \mapsto \underset{\pi, s}{\mathbb{E}} \left[\sum_{t=0}^{\infty} \gamma^t \mathbf{R}_i(s_t, \pi(s_t)) \, \middle| \, s_0 \right] \right)
$$

What is a Welfare Function?

- \blacktriangleright Given g beneficiaries
	- \blacktriangleright Utility (value) vector $v \in \mathbb{R}^9_0$ $0+$

$$
v=\left\langle \bigstar\bigstar\bigstar,\bigstar\bigstar\right\rangle
$$

4 4 13 4 4 13 13 14 15 15 15 15 15 15 15

What is a Welfare Function?

- \blacktriangleright Given *g* beneficiaries
	- \blacktriangleright Utility (value) vector $v \in \mathbb{R}^9_0$ $0+$

$$
v=\left\langle \bigstar\bigstar\bigstar,\bigstar\bigstar\right\rangle
$$

- $\blacktriangleright \mathbb{W} (\bm{v}) : \mathbb{R}_{0+}^g \rightarrow \mathbb{R}_{0+}$ *aggregates* utility across beneficiaries
	- \triangleright Welfare functions encode social values

What is a Welfare Function?

-
- **I** Given *g* beneficiaries
 I Utility (value) vector $v \in \mathbb{R}^g_{0+1}$

$$
v=\left\langle \bigstar\bigstar\bigstar,\bigstar\bigstar\right\rangle
$$

 \blacktriangleright W(v) : \mathbb{R}^g_0 $_{0+}^g \rightarrow \mathbb{R}_{0+}$ *aggregates* utility across beneficiaries

 \triangleright Welfare functions encode social values

i

- \blacktriangleright Common welfare functions
	- \blacktriangleright Utilitarian: $\mathrm{W}_1(\boldsymbol{v}) \doteq \frac{1}{g} \sum_{i=1}^g$ v_i

$$
\blacktriangleright \text{ Egalitarian: } \mathrm{W}_{-\infty}(v) \doteq \min_{i \in 1, ..., g} v
$$

$$
\blacktriangleright \ \ p \ \text{Power-Mean:} \ \mathbf{W}_p(\boldsymbol{v}) \doteq \sqrt[p]{\frac{1}{g} \sum_{i=1}^g \boldsymbol{v}_i^p}
$$

"Compromise" 3-Armed Bandit

SID + 3/13
 SID + 5/13
 SID + 5/13

"Compromise" 3-Armed Bandit

 $\pi^1 = \langle \mathbf{1}, 0, 0 \rangle$ $\pi^2 = \langle 0, \mathbf{1}, 0 \rangle$ $\pi^* = \langle 0, 0, 1 \rangle$

Beneficiary policies π^1 and π^2 and fair policy π^* are completely disjoint!

SID + 3/13
 SID + 5/13
 SID + 5/13

4 B 5/13 "Compromise" 3-Armed Bandit *s*1 **R**(*s*₁, *a*₂) = $\langle 0, 1 \rangle$ $\mathbf{R}(s_1, a_3) = \langle \frac{2}{3}$ $\frac{2}{3}, \frac{2}{3}$ $\frac{2}{3}$ $\pi^1 = \langle \mathbf{1}, 0, 0 \rangle$ $\pi^2 = \langle 0, \mathbf{1}, 0 \rangle$ $\pi^* = \langle 0, 0, 1 \rangle$ Beneficiary policies π^1 and π^2 and fair policy π^* are completely disjoint! If $\gamma \geq \frac{1}{2}$ $\frac{1}{2}$: Egalitarian policy iteration <u>oscillates indefinitely</u> $\pi^{(t+1)} \leftarrow \text{argmax}$ $\pi{\in}\Pi_\mathcal{M}$ $\mathrm{W}_{-\infty}\left(i\mapsto\mathop{\mathbb{E}}_{\pi,s_1}\right)$ $\left[\mathbf{R}_i(s_0, \pi(s_0))+\gamma \mathbf{V}^{\pi^{(t)}}_i\right]$ $\left(\begin{matrix} \pi^{(t)}\ i \end{matrix}(s_1)\right]$ $\pi(s) = \langle \mathbf{1}, 0, 0 \rangle$ ${\bf V}^\pi(s) = \langle \frac{-1}{1-s}$ $\frac{1}{1-\gamma},0\rangle$ $\pi(s) = \langle 0, \mathbf{1}, 0 \rangle$ ${\bf V}^{\pi}(s) = \langle 0, \frac{1}{1-s} \rangle$ $rac{1}{1-\gamma}\rangle$

4 B 5/13 "Compromise" 3-Armed Bandit *s*1 **R**(*s*₁, *a*₂) = $\langle 0, 1 \rangle$ $\mathbf{R}(s_1, a_3) = \langle \frac{2}{3}$ $\frac{2}{3}, \frac{2}{3}$ $\frac{2}{3}$ $\pi^1 = \langle \mathbf{1}, 0, 0 \rangle$ $\pi^2 = \langle 0, \mathbf{1}, 0 \rangle$ $\pi^* = \langle 0, 0, 1 \rangle$ Beneficiary policies π^1 and π^2 and fair policy π^* are completely disjoint! If $\gamma \geq \frac{1}{2}$ $\frac{1}{2}$: Egalitarian policy iteration <u>oscillates indefinitely</u> $\pi^{(t+1)} \leftarrow \text{argmax}$ $\pi{\in}\Pi_\mathcal{M}$ $\mathrm{W}_{-\infty}\left(i\mapsto\mathop{\mathbb{E}}_{\pi,s_1}\right)$ $\left[\mathbf{R}_i(s_0, \pi(s_0))+\gamma \mathbf{V}^{\pi^{(t)}}_i\right]$ $\left(\begin{matrix} \pi^{(t)}\end{matrix}(s_1)\right]$ $\pi(s) = \langle \mathbf{1}, 0, 0 \rangle$ ${\bf V}^\pi(s) = \langle \frac{-1}{1-s}$ $\frac{1}{1-\gamma},0\rangle$ $\pi(s) = \langle 0, \mathbf{1}, 0 \rangle$ ${\bf V}^{\pi}(s) = \langle 0, \frac{1}{1-s} \rangle$ $rac{1}{1-\gamma}\rangle$ $\pi^*(s) = \langle 0, 0, 1 \rangle$ ${\bf V}^{\pi^{\star}}(s) = \langle \frac{2/3}{1-z} \rangle$ $rac{2/3}{1-\gamma}, \frac{2/3}{1-\gamma}$ $rac{2/3}{1-\gamma}$

Overcoming Initial Disparity

"Asymmetric Start Bandit" MDP

Overcoming Initial Disparity

"Asymmetric Start Bandit" MDP

1)
\n
$$
\pi^1(s_1) = \langle \mathbf{1}, 0 \rangle
$$
\n
$$
\pi^2(s_1) = \langle 0, \mathbf{1} \rangle
$$
\n
$$
\pi^*(s_1 \text{ from } s_2) = \langle \frac{1}{2} - \frac{1-\gamma}{2\gamma} c, \frac{1}{2} + \frac{1-\gamma}{2\gamma} c \rangle
$$
\n
$$
\pi^*(s_1 \text{ from } s_3) = \langle \frac{1}{2} + \frac{1-\gamma}{2\gamma} c, \frac{1}{2} - \frac{1-\gamma}{2\gamma} c \rangle
$$

6/13
6/13
6/13

Fair policy π^* is start-state dependent!

Overcoming Initial Disparity

"Asymmetric Start Bandit" MDP

1)
\n
$$
\pi^1(s_1) = \langle \mathbf{1}, 0 \rangle
$$
\n
$$
\pi^2(s_1) = \langle 0, \mathbf{1} \rangle
$$
\n
$$
\pi^*(s_1 \text{ from } s_2) = \langle \frac{1}{2} - \frac{1-\gamma}{2\gamma} c, \frac{1}{2} + \frac{1-\gamma}{2\gamma} c \rangle
$$
\n
$$
\pi^*(s_1 \text{ from } s_3) = \langle \frac{1}{2} + \frac{1-\gamma}{2\gamma} c, \frac{1}{2} - \frac{1-\gamma}{2\gamma} c \rangle
$$

Fair policy π^* is start-state dependent!

Lemma (Optimality of Stationary Policies)

For any start state $s_0 \in \mathcal{S}$, there exists some $W(\cdot)$ -optimal policy

$$
\pi^{\star} \in \operatorname*{argmax}_{\pi \in \Pi_{\mathcal{M}}} W\left(\mathbf{V}_1^{\pi}(s_0), \ldots, \mathbf{V}_g^{\pi}(s_0)\right)
$$

that is a stationary (Markovian) stochastic policy

On Planning

Policy Iteration

✗ Nonconvergent; can oscillate indefinitely

7/13

On Planning

- **Policy Iteration**
	- ✗ Nonconvergent; can oscillate indefinitely
- I **Value Iteration**
	- \triangleright With what Bellman operator?
	- \bigwedge Many obstacles here:
		- **X** Beneficiaries each have their own value function $V_{1:g}$, but not their own policy π

7/13

✗ No greedy-optimal substructure (start-state dependence)

On Planning

- **Policy Iteration**
	- ✗ Nonconvergent; can oscillate indefinitely
- **Value Iteration**
	- \blacktriangleright With what Bellman operator?
	- \bigwedge Many obstacles here:
		- **X** Beneficiaries each have their own value function $V_{1:q}$, but not their own policy π
		- ✗ No greedy-optimal substructure (start-state dependence)

Planning with geometrically-discounted state-action occupancy frequencies

$$
d^* = \underset{d \in \mathbb{R}_{0+}^{S \times \mathcal{A}}}{\operatorname{argmax}} \ W \Bigg(\sum_{s \in \mathcal{S}, a \in \mathcal{A}} d_{s,a} \mathbf{R}_1(s, a), \sum_{s \in \mathcal{S}, a \in \mathcal{A}} d_{s,a} \mathbf{R}_2(s, a), \dots, \sum_{s \in \mathcal{S}, a \in \mathcal{A}} d_{s,a} \mathbf{R}_g(s, a) \Bigg)
$$

such that $\forall s \in \mathcal{S} : \sum_{a \in \mathcal{A}} d_{s,a} = p_s + \gamma \sum_{s' \in \mathcal{S}, a' \in \mathcal{A}} \mathbf{P}_s(s', a') d_{s',a'} ,$
Take $\pi^*(s, a) \propto d_{s,a}^*$ for all $s \in \mathcal{S}, a \in \mathcal{A}$

 $\sqrt{}$ Approximately optimize π^* with convex programming

Regret and Mistakes

 \triangleright Optimal policy is *stochastic*, can't assess individual actions **Assess regret of welfare of agent policies** $\hat{\pi}_1, \ldots, \hat{\pi}_T$ $\mathsf{Regret}(T) = \sum$ *T t*=1 $\left(W\left(\mathbf{V}^{\pi_t^{\star}}(s_t)\right) - W\left(\mathbf{V}^{\hat{\pi}_t}(s_t)\right)\right)$

Regret and Mistakes

 \triangleright Optimal policy is *stochastic*, can't assess individual actions \mathbb{R}^2 Assess regret of welfare of agent policies $\hat{\pi}_1, \ldots, \hat{\pi}_T$ $\mathsf{Regret}(T) = \sum$ *T t*=1 $\left(W\left(\mathbf{V}^{\pi_t^{\star}}(s_t)\right) - W\left(\mathbf{V}^{\hat{\pi}_t}(s_t)\right)\right)$

8/13
8/13
8/13
8/13

- \blacktriangleright When should we evaluate the agent?
	- ✗ Incoherent to take *st*+1 ∼ πˆ*t*(*st*)
		- \triangleright Geometric discounting suggests geometric episode length
		- \blacktriangleright Unfair to execute each $\hat{\pi}_t(s_t)$ (start-state dependence)
	- **Episodic:** End episode, draw s_{t+1} from start-state distribution

 \triangleright Optimal policy is *stochastic*, can't assess individual actions \mathbb{R}^2 Assess regret of welfare of agent policies $\hat{\pi}_1, \ldots, \hat{\pi}_T$ $\mathsf{Regret}(T) = \sum$ *T t*=1 $\left(W\left(\mathbf{V}^{\pi_t^{\star}}(s_t)\right) - W\left(\mathbf{V}^{\hat{\pi}_t}(s_t)\right)\right)$

 \blacktriangleright When should we evaluate the agent?

✗ Incoherent to take *st*+1 ∼ πˆ*t*(*st*)

 \triangleright Geometric discounting suggests geometric episode length

 \blacktriangleright Unfair to execute each $\hat{\pi}_t(s_t)$ (start-state dependence)

Episodic: End episode, draw s_{t+1} from start-state distribution

- ► A policy $\hat{\pi}$ is a *mistake* at *s* if $W(\mathbf{V}^{\pi_s^*}(s)) W(\mathbf{V}^{\hat{\pi}}(s)) > \varepsilon$
	- X Exploration actions are probably mistakes
	- **?** Can exploitation confidently avoid mistakes?

Learning Model: KWIK-AF

▶ KWIK Learner: At each step, in state *s*, **A** can either

- 1. Output an ε -optimal exploitation policy π_{xpt}
	- $\boldsymbol{\mathsf{X}}$ With probability at least 1δ , for all time
	- **x** No mistakes: $\mathbf{W}\left(\mathbf{V}^{\pi_s^*}(s)\right) \mathbf{W}\left(\mathbf{V}^{\pi_{\text{xpt}}}(s)\right) > \varepsilon$
- 2. Output an exploration action *a*
	- \checkmark Receive (s, a, r, s') tuple, return control to agent in s'
	- **X** Limited budget: Only $m (\vert \mathcal{S} \vert , \vert \mathcal{A} \vert , \gamma, R_{\max}, g, \varepsilon, \delta)$ exploration actions

9/13

Learning Model: KWIK-AF

▶ KWIK Learner: At each step, in state *s*, **A** can either

- 1. Output an ε -optimal exploitation policy π_{xpt}
	- $\boldsymbol{\mathsf{X}}$ With probability at least 1δ , for all time
	- **x** No mistakes: $\mathbf{W}\left(\mathbf{V}^{\pi_s^*}(s)\right) \mathbf{W}\left(\mathbf{V}^{\pi_{\text{xpt}}}(s)\right) > \varepsilon$
- 2. Output an exploration action *a*

 \checkmark Receive (s, a, r, s') tuple, return control to agent in s'

X Limited budget: Only $m (\vert \mathcal{S} \vert , \vert \mathcal{A} \vert , \gamma, R_{\max}, g, \varepsilon, \delta)$ exploration actions

▶ **Adversarial-Fair: A** must be flexible and robust

- \triangleright Optimize *adversarially selected* welfare function $W_t(\cdot)$ at each step
- \blacktriangleright When **A** outputs a policy π_{xpt} :

9/13 Move A to adversarial s', provide no feedbac[k!](#page-22-0)

Don't make a mistake. You may ask a few questions — but you must learn KWIK.

Partition state space into three sets: S_{unk} , S_{out} , S_{inn}

▶ Unknown S_{unk} : Insufficient samples ($\leq m_{knw}$) to estimate reward $\mathbf{R}(s, a)$ and transition $\mathbf{P}(s)$

K ロ K (倒 K K 至 K K 至 K 、 至

11/13

 OQ

- **Partition state space into three sets:** S_{unk} , S_{out} , S_{inn}
	- **Dinknown** S_{unk} : Insufficient samples ($\leq m_{kmw}$) to estimate reward $\mathbf{R}(s, a)$ and transition $\mathbf{P}(s)$
	- **Duter-Known** S_{out} : Some escape policy π_{esc} can reach S_{unk} in *T* steps with probability at least *E*

11/13

- **Partition state space into three sets:** S_{unk} , S_{out} , S_{inn}
	- **Dinknown** S_{unk} : Insufficient samples ($\leq m_{knw}$) to estimate reward $\mathbf{R}(s, a)$ and transition $\mathbf{P}(s)$
	- **Duter-Known** S_{out} : Some escape policy π_{esc} can reach S_{unk} in *T* steps with probability at least *E*
	- **Inner-Known** S_{inn} : No policy can reach S_{unk} in *T* steps with probability at least *E*

11/13

- **Partition state space into three sets:** S_{unk} , S_{out} , S_{inn}
	- **Dinknown** S_{unk} : Insufficient samples ($\leq m_{knw}$) to estimate reward $\mathbf{R}(s, a)$ and transition $\mathbf{P}(s)$
	- **Duter-Known** S_{out} : Some escape policy π_{esc} can reach S_{unk} in *T* steps with probability at least *E*
	- **Inner-Known** S_{inn} : No policy can reach S_{unk} in *T* steps with probability at least *E*
	- ► Learning moves states from $S_{unk} \rightarrow S_{out} \rightarrow S_{inn}$

1014@14E14E1 E 999 11/13

- **Partition state space into three sets:** S_{unk} , S_{out} , S_{inn}
	- **Dinknown** \mathcal{S}_{unk} : Insufficient samples ($\leq m_{knw}$) to estimate reward $\mathbf{R}(s, a)$ and transition $\mathbf{P}(s)$
	- **Duter-Known** S_{out} : Some escape policy π_{esc} can reach \mathcal{S}_{unk} in *T* steps with probability at least *E*
	- **Inner-Known** S_{inn} : No policy can reach S_{unk} in *T* steps with probability at least *E*
	- ► Learning moves states from $S_{unk} \rightarrow S_{out} \rightarrow S_{inn}$

\sim The E⁴ Algorithm \sim

- 1. If in \mathcal{S}_{unk} : Explore, observe (s, a, r, s') , update empirical MDP $\hat{\mathcal{M}}$, update $\mathcal{S}_{\text{unk}}, \mathcal{S}_{\text{out}}, \mathcal{S}_{\text{inn}}$
- 2. If in S_{out} : Begin escape attempt (follow π_{esc} for T steps)

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S22 S21 S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 A A ^Sinn ^Sout ^Sunk Update

$$
\pi_{\rm esc} \leftarrow \underset{\pi \in \Pi_T}{\text{argmax}} \sum_{s \in \mathcal{S}} \underset{s_{t+1} \sim \hat{\mathbf{P}}(s_t, \pi(s_t, t))}{\mathbb{P}} \left(\bigvee_{i=0}^T s_i \in \mathcal{S}_{\text{unk}} \, \middle| \, s_0 = s \right)
$$

11/13 3. Otherwise in \mathcal{S}_{inn} : Output exploit policy $\pi_{\text{xpt}} \leftarrow \operatornamewithlimits{argmax}_{\pi \in \Pi_{\mathcal{M}}} \mathrm{W} \Big(\mathbf{V}^{\pi}(s) \Big)$ $\pi \in \Pi_{\mathcal{M}}$ $W(\hat{\mathbf{V}}^{\pi}(s))$ $W(\hat{\mathbf{V}}^{\pi}(s))$ $W(\hat{\mathbf{V}}^{\pi}(s))$ $W(\hat{\mathbf{V}}^{\pi}(s))$ $W(\hat{\mathbf{V}}^{\pi}(s))$ $W(\hat{\mathbf{V}}^{\pi}(s))$ $W(\hat{\mathbf{V}}^{\pi}(s))$ $W(\hat{\mathbf{V}}^{\pi}(s))$

E ⁴ Theory

Lemma (Explore-Exploit)

At any point in the execution of E^4 , A can act effectively:

- 1. Can exploit from S_{inn}
- 2. Can explore directly from S_{unk}
- 3. Can explore indirectly from S_{out} (escape succeeds with some probability)

E ⁴ Theory

Lemma (Explore-Exploit)

At any point in the execution of E^4 , A can act effectively:

- 1. Can exploit from S_{inn}
- 2. Can explore directly from S_{unk}
- 3. Can explore indirectly from S_{out} (escape succeeds with some probability)

Theorem $(E⁴$ is a KWIK-AF Learner)

 E^4 is a KWIK-AF learner w.r.t. the class of all $\lambda\|\cdot\|_\infty$ Lipschitz-continuous welfare functions, with exploration budget

$$
\begin{aligned} \operatorname{m}\left(\left|\mathcal{S}\right|,\left|\mathcal{A}\right|,\gamma,\mathrm{R}_{\max},g,\varepsilon,\delta\right)\in\mathbf{O}\left(\left|\mathcal{S}\right|^{2}\left|\mathcal{A}\right|\left(\tfrac{\lambda\mathrm{R}_{\max}}{\varepsilon(1-\gamma)}\log_{\frac{1}{\gamma}}\left(\tfrac{\lambda\mathrm{R}_{\max}}{\varepsilon(1-\gamma)}\right)\right)^{3}\log\frac{|\mathcal{S}|\mathcal{A}|g}{\delta}\right)\\ \subseteq\operatorname{Poly}\left(\left|\mathcal{S}\right|,\left|\mathcal{A}\right|,\tfrac{1}{1-\gamma},\mathrm{R}_{\max},\log g,\tfrac{1}{\varepsilon},\log\tfrac{1}{\delta},\lambda\right) \end{aligned}
$$

12/13

 \setminus

 $\sqrt{2}$ + $\sqrt{2}$

In Summary

From Egocentric to Altruistic Agents

- \triangleright Agent A acts in \oslash , impacting beneficiaries
- \blacktriangleright Vector-valued (per-beneficiary) reward $\mathbf{R}(s, a)$
- Social planner's problem:

 \blacktriangleright Optimize welfare of value functions $\arg\max W(\mathbf{V}^{\pi}(s))$ π∈Π

In Summary

From Egocentric to Altruistic Agents

- \triangleright Agent A acts in \odot , impacting beneficiaries
- \blacktriangleright Vector-valued (per-beneficiary) reward $\mathbf{R}(s, a)$
- Social planner's problem:

 \blacktriangleright Optimize welfare of value functions $\arg\max W(\mathbf{V}^{\pi}(s))$ π∈Π

KWIK-AF: A Model of Fair RL

Adversarial flexibility Societal welfare objectives \triangleright No mistakes from bounded exploration

In Summary

From Egocentric to Altruistic Agents

- \triangleright Agent A acts in \odot , impacting beneficiaries
- \blacktriangleright Vector-valued (per-beneficiary) reward $\mathbf{R}(s, a)$
- \blacktriangleright Social planner's problem:

 \blacktriangleright Optimize welfare of value functions $\arg\max W(\mathbf{V}^{\pi}(s))$ π∈Π

KWIK-AF: A Model of Fair RL

Adversarial flexibility \blacktriangleright Societal welfare objectives \triangleright No mistakes from bounded exploration

\blacktriangleright Efficient Learning and Planning

- \triangleright KWIK-AF learn with F^4
- Plan with convex programming on state-action measure
- \triangleright Polynomial exploration budget, time complexity

