On Welfare-Centric Fair Reinforcement Learning

Cyrus Cousins

Elita Lobo

Kavosh Asadi

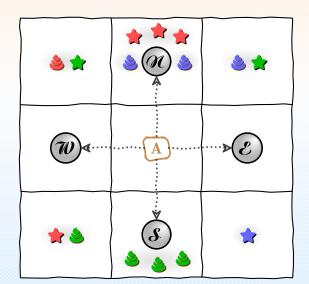
Michael Littman

University of Massachusetts
Amherst

www.cyruscousins.online/projects/rlfairness/

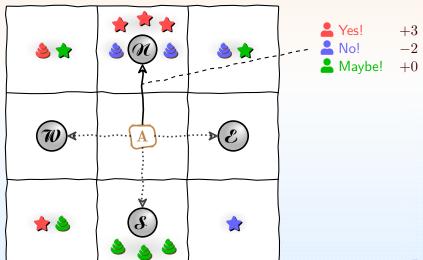
What is Group-Fair Reinforcement Learning?

- ▶ Agent A in world **②** receives *vector-valued* reward $\mathbf{R}(s, a) \in \mathbb{R}^g$ from g beneficiaries
 - ▶ Beneficiaries represent impacted parties: Individuals, entities, groups, etc.
 - ► Reward encodes *their response* to A- interactions



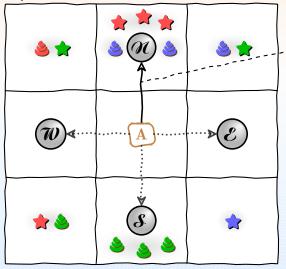
What is Group-Fair Reinforcement Learning?

- ▶ Agent A in world **②** receives *vector-valued* reward $\mathbf{R}(s, a) \in \mathbb{R}^g$ from g beneficiaries
 - ▶ Beneficiaries represent impacted parties: Individuals, entities, groups, etc.
 - ► Reward encodes *their response* to A- interactions



What is Group-Fair Reinforcement Learning?

- ▶ Agent A in world **②** receives *vector-valued* reward $\mathbf{R}(s, a) \in \mathbb{R}^g$ from g beneficiaries
 - ▶ Beneficiaries represent impacted parties: Individuals, entities, groups, etc.
 - ► Reward encodes *their response* to A- interactions
- ▶ Optimize not the value of what A wants, but the welfare of beneficiary value functions



Objective:

$$\underset{\pi \in \Pi}{\operatorname{argmax}} \, \mathbf{W} \left(i \mapsto \underset{\pi,s}{\mathbb{E}} \left[\sum_{t=0}^{\infty} \gamma^{t} \mathbf{R}_{i}(s_{t}, \pi(s_{t})) \, \middle| \, s_{0} \right] \right)$$
Geometrically discounted reward

Reject Egocentricsm

Egocentric Viewpoint

- ► A acts in ௵, and ௵ responds
- ► Scalar reward R(s, a) is *intrinsic* to A
- Rational agents <u>selfishly optimize value</u>

$$\underset{\pi \in \Pi}{\operatorname{argmax}} \mathbb{E}_{\pi,s} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, \pi(s_{t})) \, \middle| \, s_{0} \right]$$

Reject Egocentricsm

Egocentric Viewpoint

- ► A acts in **(a)**, and **(d)** responds
- \blacktriangleright Scalar reward R(s, a) is intrinsic to A
- Rational agents selfishly optimize value

$$\underset{\pi \in \Pi}{\operatorname{argmax}} \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, \pi(s_{t})) \, \middle| \, s_{0} \right]$$

Astruistic Viewpoint

- ► A's actions in **(a)** impact beneficiaries
- \blacktriangleright Vector reward $\mathbf{R}(s, a)$ quantifies impact
- ► Altruistic agents optimize societal welfare

$$\operatorname*{argmax}_{\pi \in \Pi} \mathbf{W} \left(i \mapsto \underset{\pi,s}{\mathbb{E}} \left[\sum_{t=0}^{\infty} \gamma^{t} \mathbf{R}_{i}(s_{t}, \pi(s_{t})) \, \middle| \, s_{0} \right] \right)$$

What is a Welfare Function?

- ightharpoonup Given g beneficiaries
 - $lackbox{ Utility (value) vector } v \in \mathbb{R}^g_{0+}$

$$oldsymbol{v} = \left\langle igstar igstar igstar igstar, igstar igs$$

What is a Welfare Function?

- ightharpoonup Given g beneficiaries
 - lackbox Utility (value) vector $oldsymbol{v} \in \mathbb{R}^g_{0+}$

$$oldsymbol{v} = \left\langle igstar igstar$$

- $lackbox{W}(v): \mathbb{R}^g_{0+} \to \mathbb{R}_{0+}$ aggregates utility across beneficiaries
 - ► Welfare functions encode social values

What is a Welfare Function?

- ightharpoonup Given g beneficiaries
 - lackbox Utility (value) vector $oldsymbol{v} \in \mathbb{R}^g_{0+}$

$$oldsymbol{v} = \left\langle igstar{igstar}{igstar}, igstar{igstar}{igstar}, igstar^{igstar}, igstar^{igstar}
ight
angle$$

- $lackbox{W}(v): \mathbb{R}^g_{0+} \to \mathbb{R}_{0+}$ aggregates utility across beneficiaries
 - ► Welfare functions encode social values
- ► Common welfare functions
 - $lackbox{ Utilitarian: } \mathrm{W}_1({m v}) \doteq \frac{1}{g} \sum_{i=1}^g {m v}_i$
 - $lackbox{\sf Egalitarian:} \ \mathrm{W}_{-\infty}(\pmb{v}) \doteq \min_{i \in 1, \ldots, g} \pmb{v}_i$
 - ▶ p Power-Mean: $W_p(\boldsymbol{v}) \doteq \sqrt[p]{\frac{1}{g}\sum_{i=1}^g \boldsymbol{v}_i^p}$

"Compromise" 3-Armed Bandit

$$\mathbf{R}(s_1, a_1) = \langle 1, 0 \rangle \qquad \mathbf{R}(s_1, a_2) = \langle 0, 1 \rangle$$

$$\mathbf{R}(s_1, a_3) = \langle \frac{2}{3}, \frac{2}{3} \rangle$$

"Compromise" 3-Armed Bandit

$$\mathbf{R}(s_1, a_1) = \langle 1, 0 \rangle \qquad \mathbf{R}(s_1, a_2) = \langle 0, 1 \rangle$$

$$\mathbf{R}(s_1, a_3) = \langle \frac{2}{3}, \frac{2}{3} \rangle$$

$$\pi^{1} = \langle \mathbf{1}, 0, 0 \rangle$$
$$\pi^{2} = \langle 0, \mathbf{1}, 0 \rangle$$
$$\pi^{*} = \langle 0, 0, \mathbf{1} \rangle$$

Beneficiary policies π^1 and π^2 and fair policy π^* are completely disjoint!

"Compromise" 3-Armed Bandit

$$\mathbf{R}(s_1, a_1) = \langle 1, 0 \rangle \qquad \mathbf{R}(s_1, a_2) = \langle 0, 1 \rangle \qquad \pi^1 = \langle \mathbf{1}, 0, 0 \rangle$$

$$\pi^2 = \langle \mathbf{0}, \mathbf{1}, 0 \rangle$$

$$\pi^* = \langle \mathbf{0}, \mathbf{0}, \mathbf{1} \rangle$$

$$\mathbf{R}(s_1, a_3) = \langle \frac{2}{3}, \frac{2}{3} \rangle \qquad \text{Beneficiary policies } \pi^1 \text{ and } \mathbb{R}(s_1, a_3) = \langle \frac{2}{3}, \frac{2}{3} \rangle$$

Beneficiary policies π^1 and π^2 and fair policy π^* are completely disjoint!

If $\gamma \geq \frac{1}{2}$: Egalitarian policy iteration <u>oscillates indefinitely</u>

$$\pi^{(t+1)} \leftarrow \underset{\pi \in \Pi_{\mathcal{M}}}{\operatorname{argmax}} W_{-\infty} \left(i \mapsto \underset{\pi, s_{1}}{\mathbb{E}} \left[\mathbf{R}_{i}(s_{0}, \pi(s_{0})) + \gamma \mathbf{V}_{i}^{\pi^{(t)}}(s_{1}) \right] \right)$$

$$\pi(s) = \langle \mathbf{1}, 0, 0 \rangle$$

$$\mathbf{V}^{\pi}(s) = \langle \frac{1}{1-\gamma}, 0 \rangle$$

$$\mathbf{V}^{\pi}(s) = \langle 0, \frac{1}{1-\gamma} \rangle$$

"Compromise" 3-Armed Bandit

$$\mathbf{R}(s_1, a_1) = \langle 1, 0 \rangle \qquad \mathbf{R}(s_1, a_2) = \langle 0, 1 \rangle \qquad \pi^1 = \langle \mathbf{1}, 0, 0 \rangle$$

$$\pi^2 = \langle \mathbf{0}, \mathbf{1}, 0 \rangle$$

$$\pi^* = \langle \mathbf{0}, \mathbf{0}, \mathbf{1} \rangle$$

$$\mathbf{R}(s_1, a_3) = \langle \frac{2}{3}, \frac{2}{3} \rangle \qquad \text{Beneficiary policies } \pi^1 \text{ and } \mathbb{R}(s_1, a_3) = \langle \frac{2}{3}, \frac{2}{3} \rangle$$

Beneficiary policies π^1 and π^2 and fair policy π^* are completely disjoint!

If $\gamma \geq \frac{1}{2}$: Egalitarian policy iteration <u>oscillates indefinitely</u>

$$\pi^{(t+1)} \leftarrow \operatorname*{argmax}_{\pi \in \Pi_{\mathcal{M}}} \mathbb{W}_{-\infty} \left(i \mapsto_{\pi, s_{1}} \left[\mathbf{R}_{i}(s_{0}, \pi(s_{0})) + \gamma \mathbf{V}_{i}^{\pi(t)}(s_{1}) \right] \right)$$

$$\pi^{(s)} = \langle \mathbf{1}, 0, 0 \rangle$$

$$\mathbf{V}^{\pi}(s) = \langle \frac{1}{1-\gamma}, 0 \rangle$$

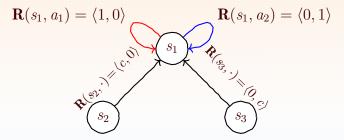
$$\mathbf{V}^{\pi^{*}}(s) = \langle \frac{2/3}{1-\gamma}, \frac{2/3}{1-\gamma} \rangle$$

$$\mathbf{V}^{\pi}(s) = \langle 0, \mathbf{1}, 0 \rangle$$

$$\mathbf{V}^{\pi}(s) = \langle 0, \frac{1}{1-\gamma} \rangle$$

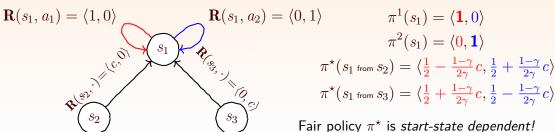
Overcoming Initial Disparity

"Asymmetric Start Bandit" MDF



Overcoming Initial Disparity

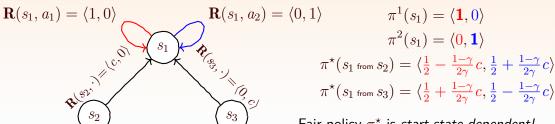
"Asymmetric Start Bandit" MDP



i all policy it is start-state dependent:

Overcoming Initial Disparity

"Asymmetric Start Bandit" MDP



Fair policy π^* is start-state dependent!

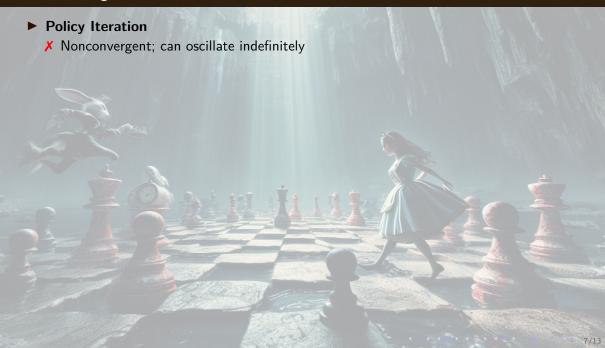
Lemma (Optimality of Stationary Policies)

For any start state $s_0 \in \mathcal{S}$, there exists some $W(\cdot)$ -optimal policy

$$\pi^{\star} \in \operatorname*{argmax}_{\pi \in \Pi_{\mathcal{M}}} W \left(\mathbf{V}_{1}^{\pi}(s_{0}), \dots, \mathbf{V}_{g}^{\pi}(s_{0}) \right)$$

that is a stationary (Markovian) stochastic policy

On Planning



On Planning

- ► Policy Iteration
 - X Nonconvergent; can oscillate indefinitely
- ► Value Iteration
 - ► With what Bellman operator?
 - - $m{\mathsf{X}}$ Beneficiaries each have their own value function $\mathbf{V}_{1:q}$, but not their own policy π
 - No greedy-optimal substructure (start-state dependence)

On Planning

- Policy Iteration
 - X Nonconvergent; can oscillate indefinitely
- **▶** Value Iteration
 - ► With what Bellman operator?
 - - $m{\mathsf{X}}$ Beneficiaries each have their own value function $\mathbf{V}_{1:q}$, but not their own policy π
 - X No greedy-optimal substructure (start-state dependence)
- Planning with geometrically-discounted state-action occupancy frequencies

$$\begin{aligned} \boldsymbol{d}^{\star} &= \underset{\boldsymbol{d} \in \mathbb{R}_{0+}^{\mathcal{S} \times \mathcal{A}}}{\operatorname{argmax}} \ \operatorname{W} \left(\sum_{s \in \mathcal{S}, a \in \mathcal{A}} \boldsymbol{d}_{s,a} \mathbf{R}_{1}(s,a), \sum_{s \in \mathcal{S}, a \in \mathcal{A}} \boldsymbol{d}_{s,a} \mathbf{R}_{2}(s,a), \dots, \sum_{s \in \mathcal{S}, a \in \mathcal{A}} \boldsymbol{d}_{s,a} \mathbf{R}_{g}(s,a) \right) \\ & \text{such that} \ \forall s \in \mathcal{S} : \ \sum_{a \in \mathcal{A}} \boldsymbol{d}_{s,a} = \boldsymbol{p}_{s} + \gamma \sum_{s' \in \mathcal{S}, a' \in \mathcal{A}} \mathbf{P}_{s}(s',a') \boldsymbol{d}_{s',a'} \ , \end{aligned}$$

$$\mathsf{Take} \ \boldsymbol{\pi}^{\star}(s,a) \propto \boldsymbol{d}_{s,a}^{\star} \quad \mathsf{for all} \ s \in \mathcal{S}, \ a \in \mathcal{A}$$

✓ Approximately optimize π^* with convex programming

Regret and Mistakes

- ▶ Optimal policy is *stochastic*, can't assess individual actions
 - \P Assess regret of welfare of agent policies $\hat{\pi}_1,\ldots,\hat{\pi}_T$

$$\operatorname{Regret}(T) = \sum_{t=1}^{T} \left(\operatorname{W} \left(\mathbf{V}^{\pi_t^{\star}}(s_t) \right) - \operatorname{W} \left(\mathbf{V}^{\hat{\pi}_t}(s_t) \right) \right)$$

Regret and Mistakes

- Optimal policy is stochastic, can't assess individual actions
 - \P Assess regret of welfare of agent policies $\hat{\pi}_1,\dots,\hat{\pi}_T$

$$\operatorname{Regret}(T) = \sum_{t=1}^{T} \left(\operatorname{W} \left(\mathbf{V}^{\pi_t^{\star}}(s_t) \right) - \operatorname{W} \left(\mathbf{V}^{\hat{\pi}_t}(s_t) \right) \right)$$

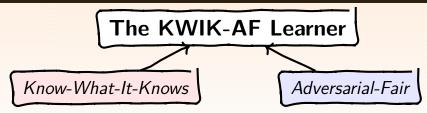
- ▶ When should we evaluate the agent?
 - **X** Incoherent to take $s_{t+1} \sim \hat{\pi}_t(s_t)$
 - ► Geometric discounting suggests geometric episode length
 - ▶ Unfair to execute each $\hat{\pi}_t(s_t)$ (start-state dependence)
 - **? Episodic:** End episode, draw s_{t+1} from start-state distribution

Regret and Mistakes

- Optimal policy is stochastic, can't assess individual actions
 - \P Assess regret of welfare of agent policies $\hat{\pi}_1,\dots,\hat{\pi}_T$

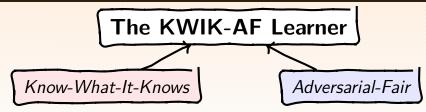
$$\operatorname{Regret}(T) = \sum_{t=1}^{T} \left(\operatorname{W} \left(\mathbf{V}^{\pi_t^{\star}}(s_t) \right) - \operatorname{W} \left(\mathbf{V}^{\hat{\pi}_t}(s_t) \right) \right)$$

- ▶ When should we evaluate the agent?
 - **X** Incoherent to take $s_{t+1} \sim \hat{\pi}_t(s_t)$
 - ► Geometric discounting suggests geometric episode length
 - ▶ Unfair to execute each $\hat{\pi}_t(s_t)$ (start-state dependence)
 - ? **Episodic:** End episode, draw s_{t+1} from start-state distribution
- ▶ A policy $\hat{\pi}$ is a mistake at s if $W\left(\mathbf{V}^{\pi_s^{\star}}(s)\right) W\left(\mathbf{V}^{\hat{\pi}}(s)\right) > \varepsilon$
 - Exploration actions are probably mistakes
 - ? Can exploitation confidently avoid mistakes?



- ▶ KWIK Learner: At each step, in state s, A can either
 - 1. Output an arepsilon-optimal exploitation policy π_{xpt}
 - **X** With probability at least 1δ , for all time
 - $ightharpoonup No mistakes: W <math>\left(\mathbf{V}^{\pi_s^{\star}}(s)\right) W \left(\mathbf{V}^{\pi_{\mathrm{xpt}}}(s)\right) > \varepsilon$
 - 2. Output an exploration action a
 - ✓ Receive (s, a, r, s') tuple, return control to agent in s'
 - $m{\mathsf{X}}$ Limited budget: Only $\mathrm{m}\left(\left|\mathcal{S}\right|,\left|\mathcal{A}\right|,\gamma,\mathrm{R}_{\mathrm{max}},g,arepsilon,\delta\right)$ exploration actions

Learning Model: KWIK-AF



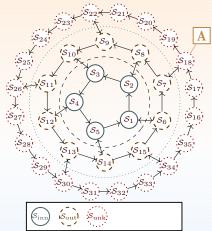
- ▶ KWIK Learner: At each step, in state s, A can either
 - 1. Output an ε -optimal exploitation policy π_{xpt}
 - **X** With probability at least 1δ , for all time
 - $ightharpoonup No mistakes: W <math>\left(\mathbf{V}^{\pi_s^{\star}}(s)\right) W \left(\mathbf{V}^{\pi_{\mathrm{xpt}}}(s)\right) > \varepsilon$
 - 2. Output an exploration action a
 - ✓ Receive (s, a, r, s') tuple, return control to agent in s'
 - $m{\mathsf{X}}$ Limited budget: Only $\mathrm{m}\left(\left|\mathcal{S}\right|,\left|\mathcal{A}\right|,\gamma,\mathrm{R}_{\mathrm{max}},g,arepsilon,\delta
 ight)$ exploration actions
- ► Adversarial-Fair: A must be *flexible* and *robust*
 - lacktriangle Optimize adversarially selected welfare function $W_t(\cdot)$ at each step
 - ▶ When A outputs a policy π_{xpt} :
 - \bigwedge Move \bigwedge to adversarial s', provide no feedback!

Don't make a mistake.

You may ask a few questions

— but you must learn KWIK.

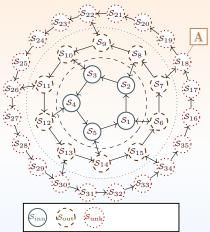
- ▶ Partition state space into three sets: S_{unk} , S_{out} , S_{inn}
 - ▶ Unknown S_{unk} : Insufficient samples ($\leq m_{\text{knw}}$) to estimate reward $\mathbf{R}(s, a)$ and transition $\mathbf{P}(s)$



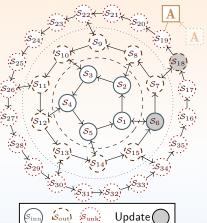
- ▶ Partition state space into three sets: S_{unk} , S_{out} , S_{inn}
 - ▶ Unknown S_{unk} : Insufficient samples ($\leq m_{\text{knw}}$) to estimate reward $\mathbf{R}(s, a)$ and transition $\mathbf{P}(s)$
 - **Outer-Known** S_{out} : Some escape policy π_{esc} can reach S_{unk} in T steps with probability at least E



- ▶ Partition state space into three sets: S_{unk} , S_{out} , S_{inn}
 - ▶ Unknown S_{unk} : Insufficient samples ($\leq m_{\text{knw}}$) to estimate reward $\mathbf{R}(s, a)$ and transition $\mathbf{P}(s)$
 - **Outer-Known** S_{out} : Some escape policy π_{esc} can reach S_{unk} in T steps with probability at least E
 - ▶ Inner-Known S_{inn} : No policy can reach S_{unk} in Tsteps with probability at least E



- ▶ Partition state space into three sets: S_{unk} , S_{out} , S_{inn}
 - ▶ Unknown S_{unk} : Insufficient samples ($\leq m_{\text{knw}}$) to estimate reward $\mathbf{R}(s, a)$ and transition $\mathbf{P}(s)$
 - **Outer-Known** S_{out} : Some escape policy π_{esc} can reach S_{unk} in T steps with probability at least E
 - ▶ Inner-Known S_{inn} : No policy can reach S_{ink} in Tsteps with probability at least E
 - Learning moves states from $S_{unk} \to S_{out} \to S_{inn}$



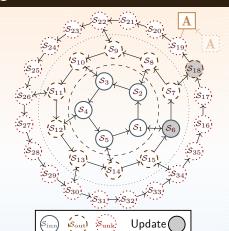
- lacktriangle Partition state space into three sets: \mathcal{S}_{unk} , \mathcal{S}_{out} , \mathcal{S}_{inn}
 - ▶ Unknown S_{unk} : Insufficient samples ($\leq m_{knw}$) to estimate reward $\mathbf{R}(s, a)$ and transition $\mathbf{P}(s)$
 - ▶ Outer-Known S_{out} : Some escape policy π_{esc} can reach S_{unk} in T steps with probability at least E
 - ▶ Inner-Known S_{inn} : No policy can reach S_{unk} in T steps with probability at least E
 - ▶ Learning moves states from $S_{unk} \rightarrow S_{out} \rightarrow S_{inn}$

\sim The E 4 Algorithm \sim

- 1. If in S_{unk} : Explore, observe (s, a, r, s'), update empirical MDP \hat{M} , update S_{unk} , S_{out} , S_{inn}
- 2. If in S_{out} : Begin escape attempt (follow π_{esc} for T steps)

$$\pi_{\mathrm{esc}} \leftarrow \operatorname*{argmax}_{\pi \in \Pi_{T}} \sum_{s \in \mathcal{S}} \mathbb{P}_{s_{t+1} \sim \hat{\mathbf{P}}(s_{t}, \pi(s_{t}, t))} \left(\bigvee_{i=0}^{T} s_{i} \in \mathcal{S}_{\mathrm{unk}} \, \middle| \, s_{0} = s \right)$$

3. Otherwise in \mathcal{S}_{inn} : Output exploit policy $\pi_{xpt} \leftarrow \underset{\pi \in \Pi}{\operatorname{argmax}} \ \operatorname{W}\left(\hat{\mathbf{V}}^{\pi}(s)\right)$



E⁴ Theory

Lemma (Explore-Exploit)

At any point in the execution of E^4 , A can act effectively:

- 1. Can exploit from S_{inn}
- 2. Can explore directly from S_{unk}
- 3. Can explore indirectly from $\mathcal{S}_{\mathrm{out}}$ (escape succeeds with some probability)

Lemma (Explore-Exploit)

At any point in the execution of E^4 , A can act effectively:

- 1. Can exploit from $\mathcal{S}_{\mathrm{inn}}$
- 2. Can explore directly from \mathcal{S}_{unk}
- 3. Can explore indirectly from \mathcal{S}_{out} (escape succeeds with some probability)

Theorem (E⁴ is a KWIK-AF Learner)

 E^4 is a KWIK-AF learner w.r.t. the class of all $\lambda + \|\cdot\|_{\infty}$ Lipschitz-continuous welfare functions, with exploration budget

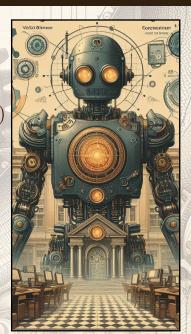
$$\begin{split} \operatorname{m} \left(\left| \mathcal{S} \right|, \left| \mathcal{A} \right|, \gamma, \operatorname{R}_{\max}, g, \varepsilon, \delta \right) &\in \mathbf{O} \left(\left| \mathcal{S} \right|^{2} \left| \mathcal{A} \right| \left(\frac{\lambda \operatorname{R}_{\max}}{\varepsilon (1 - \gamma)} \log_{\frac{1}{\gamma}} \left(\frac{\lambda \operatorname{R}_{\max}}{\varepsilon (1 - \gamma)} \right) \right)^{3} \log^{\frac{\left| \mathcal{S} \right| \left| \mathcal{A} \right| g}{\delta}} \right) \\ &\subseteq \operatorname{Poly} \left(\left| \mathcal{S} \right|, \left| \mathcal{A} \right|, \frac{1}{1 - \gamma}, \operatorname{R}_{\max}, \log g, \frac{1}{\varepsilon}, \log \frac{1}{\delta}, \lambda \right) \end{split}$$

In Summary

- ► From Egocentric to Altruistic Agents
 - ► Agent A acts in , impacting beneficiaries
 - ▶ Vector-valued (per-beneficiary) reward $\mathbf{R}(s, a)$
 - ► Social planner's problem:
 - ▶ Optimize welfare of value functions $\underset{\pi \in \Pi}{\operatorname{argmax}} W(\mathbf{V}^{\pi}(s))$

In Summary

- ► From Egocentric to Altruistic Agents
 - ► Agent A acts in , impacting beneficiaries
 - ▶ Vector-valued (per-beneficiary) reward $\mathbf{R}(s, a)$
 - ► Social planner's problem:
 - ▶ Optimize welfare of value functions $\underset{\pi \in \Pi}{\operatorname{argmax}} W(\mathbf{V}^{\pi}(s))$
- ► KWIK-AF: A Model of Fair RL
 - ► Adversarial flexibility
 - Societal welfare objectives
 - ► No mistakes from bounded exploration



In Summary

- ► From Egocentric to Altruistic Agents
 - ► Agent A acts in , impacting beneficiaries
 - ▶ Vector-valued (per-beneficiary) reward $\mathbf{R}(s, a)$
 - ► Social planner's problem:
 - ▶ Optimize welfare of value functions $\underset{\pi \in \Pi}{\operatorname{argmax}} W(\mathbf{V}^{\pi}(s))$
- ► KWIK-AF: A Model of Fair RL
 - Adversarial flexibility
 - Societal welfare objectives
 - ▶ No mistakes from bounded exploration
- ► Efficient Learning and Planning
 - ► KWIK-AF learn with E⁴
 - ▶ Plan with convex programming on state-action measure
 - ▶ Polynomial exploration budget, time complexity

