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Reject Egocentricsm

Egocentric Viewpoint

I A acts in , and responds
I Scalar reward R(s, a) is intrinsic to A
I Rational agents selfishly optimize value

argmax
π∈Π

E
π,s

[ ∞∑
t=0

γtR(st, π(st))

∣∣∣∣ s0]

Altruistic Viewpoint

I A’s actions in impact beneficiaries
I Vector reward R(s, a) quantifies impact
I Altruistic agents optimize societal welfare

argmax
π∈Π

W

(
i 7→ E

π,s

[ ∞∑
t=0

γtRi(st, π(st))

∣∣∣∣ s0]
)

What is Group-Fair Reinforcement Learning?
I Agent A in world receives vector-valued reward R(s, a) ∈ Rg for g beneficiaries
I Beneficiaries represent impacted parties: Individuals, entities, groups, etc.
I Reward encodes their response to A- interactions
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Optimize not the value of what A wants,
but the welfare of value functions

Objective:

argmax
π∈Π

W

(
i 7→ E

π,s

[ ∞∑
t=0

γtRi(st, π(st))︸ ︷︷ ︸
Geometrically discounted reward

∣∣∣∣ s0]
)

What is a Welfare Function?
I Utility (value) vector v ∈ Rg

0+:
I W(v) : Rg

0+→ R0+ aggregates utility across beneficiaries
Utilitarian: W1(v)
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Even Bandits are Tricky!
“Compromise” 3-Armed Bandit

s1
R(s1, a1) = 〈1, 0〉 R(s1, a2) = 〈0, 1〉

R(s1, a3) = 〈23,
2
3〉

π1 = 〈1, 0, 0〉
π2 = 〈0, 1, 0〉
π? = 〈0, 0, 1〉

Beneficiary policies π1 and π2 and fair policy π? are disjoint!
If γ ≥ 1

2: Egalitarian policy iteration oscillates indefinitely

π(t+1)← argmax
π∈ΠM

W−∞

(
i 7→ E

π,s1

[
Ri(s0, π(s0)) + γVπ(t)

i (s1)
])

π(s) = 〈1, 0, 0〉
Vπ(s) = 〈 1

1−γ, 0〉
π(s) = 〈0, 1, 0〉

Vπ(s) = 〈0, 1
1−γ〉

π?(s) = 〈0, 0, 1〉
Vπ?

(s) = 〈 2/31−γ,
2/3
1−γ〉

On Planning
I Policy Iteration

7 Nonconvergent; can oscillate indefinitely
I Value Iteration
I With what Bellman operator? Many obstacles here:

7 Beneficiaries each have their own value function V1:g, but not their own policy π
7 No greedy-optimal substructure (start-state dependence)

I Planning with geometrically-discounted state-action occupancy frequencies

d? = argmax
d∈RS×A0+

W

( ∑
s∈S,a∈A

ds,aR1(s, a),
∑

s∈S,a∈A
ds,aR2(s, a), . . . ,

∑
s∈S,a∈A

ds,aRg(s, a)
)

such that ∀s ∈ S :
∑
a∈A

ds,a = ps + γ
∑

s′∈S,a′∈A
Ps(s′, a′)ds′,a′ ,

Take π?(s, a) ∝ d?
s,a for all s ∈ S, a ∈ A

Regret and Mistakes
I Optimal policy is stochastic, can’t assess individual actions
I Assess regret of welfare of agent policies π̂1, . . . , π̂T

Regret(T ) =

T∑
t=1

(
W
(
Vπ?

t (st)
)
−W

(
Vπ̂t(st)

))
I When should we evaluate the agent?

7 Incoherent to take st+1 ∼ π̂t(st)
I Geometric discounting suggests geometric episode length
I Unfair to execute each π̂t(st) (start-state dependence)

? Continuous: Follow π̂t for Geometric(1− γ) steps, resume
? Episodic: End episode, draw st+1 from start-state distribution

I A policy π̂ is a mistake at s if W
(
Vπ?

s(s)
)
−W

(
Vπ̂(s)

)
> ε

7 Exploration actions are probably mistakes
? Can exploitation confidently avoid mistakes?

Learning Model: KWIK-AF
The KWIK-AF Learner

Know-What-It-Knows Adversarial-Fair

I KWIK Learner: At each step, agent has two choices:
1. Output an ε-optimal exploitation policy πxpt

7 With probability at least 1− δ, for all time
7 No mistakes: W

(
Vπ?

s(s)
)
−W

(
Vπxpt(s)

)
> ε

2. Output an exploration action a
3 Receive (s, a, r , s′) tuple, return control to agent in s′
7 Limited budget: Only m

(
|S| ,|A| , γ,Rmax, g, ε, δ

)
exploration actions, ever

I Adversarial-Fair: Algorithm must be flexible and robust
I Optimize for adversarially selected welfare function W(·) at each step
I When A outputs a policy πxpt:
I Move A to adversarial s′, provide no feedback!

Don't make a mistake.Don't make a mistake.

You may ask a few questionsYou may ask a few questions

— but you must learn KWIK.— but you must learn KWIK.

E4: The Equitable Explicit Explore Exploit Algorithm

I Partition state space into three sets: Sunk, Sout, Sinn
I Unknown Sunk: Insufficient samples (fewer than mknw) to

estimate reward R(s, a) and transition P(s)
I Outer-Known Sout: Some escape policy πesc can reach Sunk

in T steps with probability at least E
I Inner-Known Sinn: No policy can reach Sunk in T steps

with probability at least E
I Learning moves states from Sunk→ Sout→ Sinn
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Sinn Sout Sunk Update
∼ The E4 Algorithm ∼

1. If in Sunk: Explore, observe (s, a, r , s′),
update empirical MDP M̂, update Sunk,Sout,Sinn

2. If escape in progress: Follow πesc and decrement timer
3. If in Sout: Begin T -step escape attempt in πesc← argmax

π∈ΠT

∑
s∈S

P
st+1∼P̂(st,π(st,t))

( T∨
i=0

si ∈ Sunk

∣∣∣s0 = s
)

4. Otherwise in Sinn: Output exploit policy πxpt← argmax
π∈ΠM

W
(

V̂π(s)
)

E4 Theory
I Can set T ,E ,mknw to ε-δ KWIK-AF learn
I At any point in the execution of E4, A can act effectively:

1. Can exploit from Sinn
2. Can explore directly from Sunk
3. Can explore indirectly from Sout
I Escape succeeds with some probability

I E4 KWIK-AF learns w.r.t. the class of all λ-‖·‖∞ Lipschitz-continuous welfare functions

Exploration Budget: m
(
|S| ,|A| , γ,Rmax, g, ε, δ

)
∈ O

(
|S|2|A|

(
λRmax
ε(1−γ) log1

γ

(
λRmax
ε(1−γ)

))3
log |S||A|gδ

)
⊆ Poly

(
|S| ,|A| , 1

1−γ,Rmax, log g, 1ε, log 1
δ, λ
)

In Summary

I From Egocentric to Altruistic Agents
I Agent A acts in , impacting beneficiaries
I Vector-valued (per-beneficiary) reward R(s, a)
I Social planner’s problem:
I Optimize welfare of value functions argmax

π∈Π
W
(
Vπ(s)

)
I Incorporate fairness into sequential learning problems

I KWIK-AF: A Model of Fair RL
I Adversarial flexibility
I Societal welfare objectives
I Tolerate no mistakes, allow bounded exploration
I Challenging model of learning, subsumes PAC-MDP

I Efficient Learning and Planning
I Learn with E4: Poly(. . . ) exploration budget
I Plan with convex programming on state-action measure
I Fair RL and classic RL are comparably difficult
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