
1/1

On Welfare-Centric Fair Reinforcement Learning

Cyrus Cousins Elita Lobo Kavosh Asadi Michael Littman

www.cyruscousins.online/projects/rlfairness/
Reject Egocentricsm

Egocentric Viewpoint

I A acts in , and responds
I Scalar reward R(s, a) is intrinsic to A
I Rational agents selfishly optimize value

argmax
π∈Π

E
π,s

[∞∑
t=0

γtR(st, π(st))

∣∣∣∣ s0]

Altruistic Viewpoint

I A’s actions in impact beneficiaries
I Vector reward R(s, a) quantifies impact
I Altruistic agents optimize societal welfare

argmax
π∈Π

W

(
i 7→ E

π,s

[∞∑
t=0

γtRi(st, π(st))

∣∣∣∣ s0]
)

What is Group-Fair Reinforcement Learning?
I Agent A in world receives vector-valued reward R(s, a) ∈ Rg for g beneficiaries
I Beneficiaries represent impacted parties: Individuals, entities, groups, etc.
I Reward encodes their response to A- interactions

STARSTAR STARSTAR STARSTAR

💩

💩

💩

💩

💩

💩STARSTAR 💩

💩STARSTAR

STARSTAR💩💩 STARSTAR

💩

💩

💩

💩

💩

💩

A

N

E

S

W

UserUser Yes! +3

UserUser No! −2
UserUser Maybe! +0

Optimize not the value of what A wants,
but the welfare of value functions

Objective:

argmax
π∈Π

W

(
i 7→ E

π,s

[∞∑
t=0

γtRi(st, π(st))︸ ︷︷ ︸
Geometrically discounted reward

∣∣∣∣ s0]
)

What is a Welfare Function?
I Utility (value) vector v ∈ Rg

0+:
I W(v) : Rg

0+→ R0+ aggregates utility across beneficiaries
Utilitarian: W1(v)

.
=

1

g

g∑
i=1

vi

Egalitarian: W−∞(v)
.
= min

i∈1,...,g
vi

p Power-Mean: Wp(v)
.
=

p

√
1

g

g∑
i=1

vp
i

Even Bandits are Tricky!
“Compromise” 3-Armed Bandit

s1
R(s1, a1) = 〈1, 0〉 R(s1, a2) = 〈0, 1〉

R(s1, a3) = 〈23,
2
3〉

π1 = 〈1, 0, 0〉
π2 = 〈0, 1, 0〉
π? = 〈0, 0, 1〉

Beneficiary policies π1 and π2 and fair policy π? are disjoint!
If γ ≥ 1

2: Egalitarian policy iteration oscillates indefinitely

π(t+1)← argmax
π∈ΠM

W−∞

(
i 7→ E

π,s1

[
Ri(s0, π(s0)) + γVπ(t)

i (s1)
])

π(s) = 〈1, 0, 0〉
Vπ(s) = 〈 1

1−γ, 0〉
π(s) = 〈0, 1, 0〉

Vπ(s) = 〈0, 1
1−γ〉

π?(s) = 〈0, 0, 1〉
Vπ?

(s) = 〈 2/31−γ,
2/3
1−γ〉

On Planning
I Policy Iteration

7 Nonconvergent; can oscillate indefinitely
I Value Iteration
I With what Bellman operator? Many obstacles here:

7 Beneficiaries each have their own value function V1:g, but not their own policy π
7 No greedy-optimal substructure (start-state dependence)

I Planning with geometrically-discounted state-action occupancy frequencies

d? = argmax
d∈RS×A0+

W

(∑
s∈S,a∈A

ds,aR1(s, a),
∑

s∈S,a∈A
ds,aR2(s, a), . . . ,

∑
s∈S,a∈A

ds,aRg(s, a)
)

such that ∀s ∈ S :
∑
a∈A

ds,a = ps + γ
∑

s′∈S,a′∈A
Ps(s′, a′)ds′,a′ ,

Take π?(s, a) ∝ d?
s,a for all s ∈ S, a ∈ A

Regret and Mistakes
I Optimal policy is stochastic, can’t assess individual actions
I Assess regret of welfare of agent policies π̂1, . . . , π̂T

Regret(T) =

T∑
t=1

(
W
(
Vπ?

t (st)
)
−W

(
Vπ̂t(st)

))
I When should we evaluate the agent?

7 Incoherent to take st+1 ∼ π̂t(st)
I Geometric discounting suggests geometric episode length
I Unfair to execute each π̂t(st) (start-state dependence)

? Continuous: Follow π̂t for Geometric(1− γ) steps, resume
? Episodic: End episode, draw st+1 from start-state distribution

I A policy π̂ is a mistake at s if W
(
Vπ?

s(s)
)
−W

(
Vπ̂(s)

)
> ε

7 Exploration actions are probably mistakes
? Can exploitation confidently avoid mistakes?

Learning Model: KWIK-AF
The KWIK-AF Learner

Know-What-It-Knows Adversarial-Fair

I KWIK Learner: At each step, agent has two choices:
1. Output an ε-optimal exploitation policy πxpt

7 With probability at least 1− δ, for all time
7 No mistakes: W

(
Vπ?

s(s)
)
−W

(
Vπxpt(s)

)
> ε

2. Output an exploration action a
3 Receive (s, a, r , s′) tuple, return control to agent in s′
7 Limited budget: Only m

(
|S| ,|A| , γ,Rmax, g, ε, δ

)
exploration actions, ever

I Adversarial-Fair: Algorithm must be flexible and robust
I Optimize for adversarially selected welfare function W(·) at each step
I When A outputs a policy πxpt:
I Move A to adversarial s′, provide no feedback!

Don't make a mistake.Don't make a mistake.

You may ask a few questionsYou may ask a few questions

— but you must learn KWIK.— but you must learn KWIK.

E4: The Equitable Explicit Explore Exploit Algorithm

I Partition state space into three sets: Sunk, Sout, Sinn
I Unknown Sunk: Insufficient samples (fewer than mknw) to

estimate reward R(s, a) and transition P(s)
I Outer-Known Sout: Some escape policy πesc can reach Sunk

in T steps with probability at least E
I Inner-Known Sinn: No policy can reach Sunk in T steps

with probability at least E
I Learning moves states from Sunk→ Sout→ Sinn

S1

S2
S3

S4

S5
S6

S7

S8
S9

S10

S11

S12

S13
S14

S15

S16

S17

S18

S19

S20
S21S22

S23

S24

S25

S26

S27

S28

S29

S30
S31 S32

S33

S34

S35

A
A

S18

S6

Sinn Sout Sunk Update
∼ The E4 Algorithm ∼

1. If in Sunk: Explore, observe (s, a, r , s′),
update empirical MDP M̂, update Sunk,Sout,Sinn

2. If escape in progress: Follow πesc and decrement timer
3. If in Sout: Begin T -step escape attempt in πesc← argmax

π∈ΠT

∑
s∈S

P
st+1∼P̂(st,π(st,t))

(T∨
i=0

si ∈ Sunk

∣∣∣s0 = s
)

4. Otherwise in Sinn: Output exploit policy πxpt← argmax
π∈ΠM

W
(

V̂π(s)
)

E4 Theory
I Can set T ,E ,mknw to ε-δ KWIK-AF learn
I At any point in the execution of E4, A can act effectively:

1. Can exploit from Sinn
2. Can explore directly from Sunk
3. Can explore indirectly from Sout
I Escape succeeds with some probability

I E4 KWIK-AF learns w.r.t. the class of all λ-‖·‖∞ Lipschitz-continuous welfare functions

Exploration Budget: m
(
|S| ,|A| , γ,Rmax, g, ε, δ

)
∈ O

(
|S|2|A|

(
λRmax
ε(1−γ) log1

γ

(
λRmax
ε(1−γ)

))3
log |S||A|gδ

)
⊆ Poly

(
|S| ,|A| , 1

1−γ,Rmax, log g, 1ε, log 1
δ, λ
)

In Summary

I From Egocentric to Altruistic Agents
I Agent A acts in , impacting beneficiaries
I Vector-valued (per-beneficiary) reward R(s, a)
I Social planner’s problem:
I Optimize welfare of value functions argmax

π∈Π
W
(
Vπ(s)

)
I Incorporate fairness into sequential learning problems

I KWIK-AF: A Model of Fair RL
I Adversarial flexibility
I Societal welfare objectives
I Tolerate no mistakes, allow bounded exploration
I Challenging model of learning, subsumes PAC-MDP

I Efficient Learning and Planning
I Learn with E4: Poly(. . .) exploration budget
I Plan with convex programming on state-action measure
I Fair RL and classic RL are comparably difficult

https://www.cyruscousins.online/projects/rlfairness/home.html

	

