On Welfare-Centric Fair Reinforcement Learning

Elita Lobo

Cyrus Cousins

Reinforcement .earning

Kavosh Asadi

Michael Littman

www.cyruscousins.online/projects/rlfairness/

Reject Egocentricsm

Egocentric Viewpoint

Altruistic Viewpoint

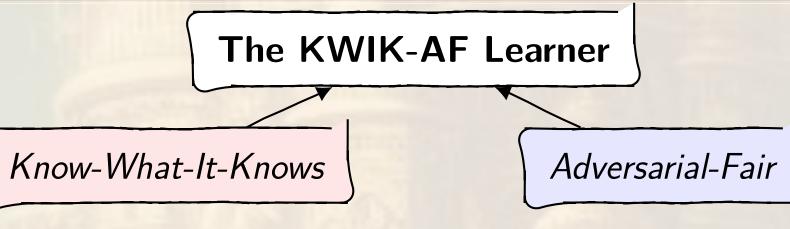
Regret and Mistakes

- Optimal policy is *stochastic*, can't assess individual actions
 - Assess regret of welfare of agent policies $\hat{\pi}_1, \ldots, \hat{\pi}_T$

 $\mathsf{Regret}(T) = \sum \left(\mathrm{W}\left(\mathbf{V}^{\pi_t^{\star}}(s_t)\right) - \mathrm{W}\left(\mathbf{V}^{\hat{\pi}_t}(s_t)\right) \right)$

- ► When should we evaluate the agent?
 - \checkmark Incoherent to take $s_{t+1} \sim \hat{\pi}_t(s_t)$
 - Geometric discounting suggests geometric episode length
 - Unfair to execute each $\hat{\pi}_t(s_t)$ (start-state dependence)
 - **Continuous:** Follow $\hat{\pi}_t$ for Geometric (1γ) steps, resume **Episodic:** End episode, draw s_{t+1} from start-state distribution
- ► A policy $\hat{\pi}$ is a *mistake* at *s* if $W(\mathbf{V}^{\pi_s^*}(s)) W(\mathbf{V}^{\hat{\pi}}(s)) > \varepsilon$
 - X Exploration actions are probably mistakes
 - Can exploitation confidently avoid mistakes?

Learning Model: KWIK-AF



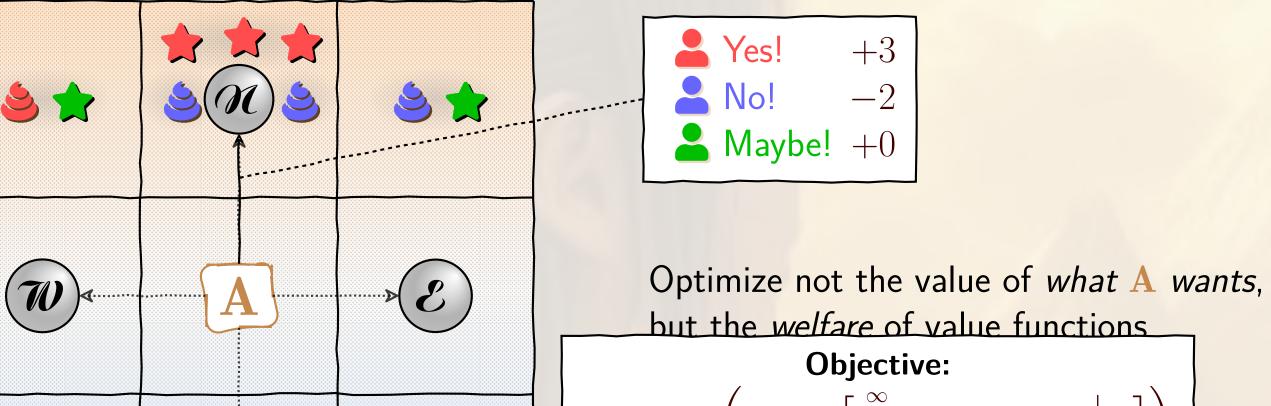
- **KWIK Learner:** At each step, agent has two choices: 1. Output an ε -optimal exploitation policy π_{xpt} × With probability at least $1 - \delta$, for all time

► A acts in , and responds **Scalar reward** R(s, a) is *intrinsic* to **A** Rational agents selfishly optimize value

 $\underset{\pi \in \Pi}{\operatorname{argmax}} \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^{t} \mathcal{R}(s_{t}, \pi(s_{t})) \middle| s_{0} \right]$

What is Group-Fair Reinforcement Learning?

- ▶ Agent A in world \bigotimes receives *vector-valued* reward $\mathbf{R}(s, a) \in \mathbb{R}^g$ for g beneficiaries
- Beneficiaries represent impacted parties: Individuals, entities, groups, etc.
- ► Reward encodes *their response* to A- interactions



- A's actions in impact beneficiaries
- Vector reward $\mathbf{R}(s, a)$ quantifies impact
- Altruistic agents optimize societal welfare

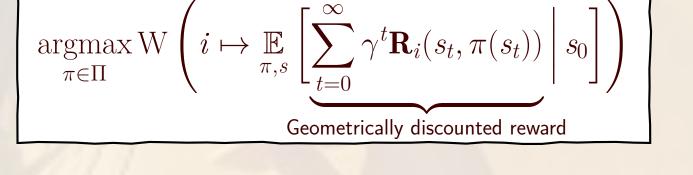
 $\operatorname{argmax}_{\pi \in \Pi} W\left(i \mapsto \mathbb{E}_{\pi,s} \left[\sum_{t=0}^{\infty} \gamma^{t} \mathbf{R}_{i}(s_{t}, \pi(s_{t})) \middle| s_{0} \right] \right)$

- × No mistakes: $W(\mathbf{V}^{\pi_s^{\star}}(s)) W(\mathbf{V}^{\pi_{\mathrm{xpt}}}(s)) > \varepsilon$
- 2. Output an exploration action a
 - Receive (s, a, r, s') tuple, return control to agent in s'
 - \checkmark Limited budget: Only m $(|\mathcal{S}|, |\mathcal{A}|, \gamma, R_{\max}, g, \varepsilon, \delta)$ exploration actions, ever
- Adversarial-Fair: Algorithm must be *flexible* and *robust*
 - Optimize for *adversarially selected* welfare function $W(\cdot)$ at each step
 - When A outputs a policy π_{xpt} :
 - ► Move A to adversarial s', provide no feedback!

Don't make a mistake. You may ask a few questions — but you must learn KWIK.

E⁴: The Equitable Explicit Explore Exploit Algorithm

- ▶ Partition state space into three sets: S_{unk} , S_{out} , S_{inn}
 - **Unknown** S_{unk} : Insufficient samples (fewer than m_{knw}) to estimate reward $\mathbf{R}(s, a)$ and transition $\mathbf{P}(s)$
 - **• Outer-Known** S_{out} : Some escape policy π_{esc} can reach S_{unk} in T steps with probability at least E



Objective:

Maybe! +0

What is a Welfare Function?

- ▶ Utility (value) vector $\boldsymbol{v} \in \mathbb{R}_{0+}^g$: ▶ $W(\boldsymbol{v}) : \mathbb{R}_{0+}^g \to \mathbb{R}_{0+}$ aggregates utility across beneficiaries Utilitarian: $W_1(\boldsymbol{v}) \doteq \frac{1}{a} \sum_{i=1}^{b} \boldsymbol{v}_i$ **Egalitarian:** $\operatorname{W}_{-\infty}(\boldsymbol{v}) \doteq \min_{i \in 1, \dots, q} \boldsymbol{v}_i$ *p* Power-Mean: $W_p(\boldsymbol{v}) \doteq \sqrt[p]{\frac{1}{a}\sum^{g} \boldsymbol{v}_i^p}$ Even Bandits are Tricky! "Compromise" 3-Armed Bandit $\pi^{\perp} = \langle \mathbf{1}, \mathbf{0}, \mathbf{0} \rangle$ $\mathbf{R}(s_1, a_1) = \langle 1, 0 \rangle \qquad \mathbf{R}(s_1, a_2) = \langle 0, 1 \rangle$ $\pi^2 = \langle \mathbf{0}, \mathbf{1}, \mathbf{0} \rangle$ $\pi^{\star} = \langle 0, 0, \mathbf{1}
 angle$ $\mathbf{R}(s_1, a_3) = \langle \frac{2}{3}, \frac{2}{3} \rangle$ Beneficiary policies π^1 and π^2 and fair policy π^* are disjoint! If $\gamma \geq \frac{1}{2}$: Egalitarian policy iteration oscillates indefinitely $\pi^{(t+1)} \leftarrow \operatorname*{argmax}_{\pi \in \Pi_{\mathcal{M}}} W_{-\infty} \left(i \mapsto \underset{\pi, s_1}{\mathbb{E}} \left[\mathbf{R}_i(s_0, \pi(s_0)) + \gamma \mathbf{V}_i^{\pi^{(t)}}(s_1) \right] \right)$ $\pi^{\star}(s) = \langle \mathbf{0}, \mathbf{0}, \mathbf{1} \rangle$ $\pi(s) = \langle \mathbf{1}, \mathbf{0}, 0 \rangle$ $\pi(s) = \langle 0, \mathbf{1}, 0 \rangle$
- ▶ Inner-Known S_{inn} : No policy can reach S_{unk} in T steps with probability at least E
- ▶ Learning moves states from $S_{unk} \rightarrow S_{out} \rightarrow S_{inn}$
- \sim The E⁴ Algorithm \sim
- 1. If in S_{unk} : Explore, observe (s, a, r, s'), update empirical MDP \mathcal{M} , update $\mathcal{S}_{unk}, \mathcal{S}_{out}, \mathcal{S}_{inn}$
- 2. If escape in progress: Follow π_{esc} and decrement timer
- 3. If in S_{out} : Begin *T*-step escape attempt in $\pi_{esc} \leftarrow \underset{\pi \in \Pi_T}{\operatorname{argmax}} \sum_{s \in S} \mathbb{P}_{s_{t+1} \sim \hat{\mathbf{P}}(s_t, \pi(s_t, t))} \left(\bigvee_{i=0}^{r} s_i \in S_{unk} \middle| s_0 = s \right)$
- 4. Otherwise in S_{inn} : Output exploit policy $\pi_{xpt} \leftarrow \operatorname{argmax} W(\hat{\mathbf{V}}^{\pi}(s))$

- E⁴ Theory
- ► Can set T, E, m_{knw} to ε - δ KWIK-AF learn
- \blacktriangleright At any point in the execution of E⁴, A can act effectively:
 - 1. Can exploit from S_{inn}
 - 2. Can explore directly from S_{unk}
 - 3. Can explore indirectly from S_{out}
 - Escape succeeds with some probability
- \blacktriangleright E⁴ KWIK-AF learns w.r.t. the class of all $\lambda \|\cdot\|_{\infty}$ Lipschitz-continuous welfare functions

Exploration Budget: $m\left(|\mathcal{S}|, |\mathcal{A}|, \gamma, R_{\max}, g, \varepsilon, \delta\right) \in \mathbf{O}\left(|\mathcal{S}|^2 |\mathcal{A}| \left(\frac{\lambda R_{\max}}{\varepsilon(1-\gamma)} \log_{\frac{1}{\gamma}} \left(\frac{\lambda R_{\max}}{\varepsilon(1-\gamma)}\right)\right)^3 \log \frac{|\mathcal{S}||\mathcal{A}|g}{\delta}\right)$ $\subseteq \operatorname{Poly}\left(\left|\mathcal{S}\right|, \left|\mathcal{A}\right|, \frac{1}{1-\gamma}, \operatorname{R_{max}}, \log g, \frac{1}{\varepsilon}, \log \frac{1}{\delta}, \lambda\right)$

On Planning

Policy Iteration

- X Nonconvergent; can oscillate indefinitely
- ► Value Iteration
 - With what Bellman operator? Many obstacles here:
 - × Beneficiaries each have their own value function $V_{1:q}$, but not their own policy π
 - X No greedy-optimal substructure (start-state dependence)
- Planning with geometrically-discounted state-action occupancy frequencies

$$\begin{aligned} \boldsymbol{d}^{\star} &= \underset{\boldsymbol{d} \in \mathbb{R}_{0+}^{\mathcal{S} \times \mathcal{A}}}{\operatorname{argmax}} \ \mathbb{W} \left(\sum_{s \in \mathcal{S}, a \in \mathcal{A}} \boldsymbol{d}_{s,a} \mathbf{R}_{1}(s, a), \sum_{s \in \mathcal{S}, a \in \mathcal{A}} \boldsymbol{d}_{s,a} \mathbf{R}_{2}(s, a), \dots, \sum_{s \in \mathcal{S}, a \in \mathcal{A}} \boldsymbol{d}_{s,a} \mathbf{R}_{g}(s, a) \right) \\ & \text{such that } \forall s \in \mathcal{S} : \sum_{a \in \mathcal{A}} \boldsymbol{d}_{s,a} = \boldsymbol{p}_{s} + \gamma \sum_{s' \in \mathcal{S}, a' \in \mathcal{A}} \mathbf{P}_{s}(s', a') \boldsymbol{d}_{s',a'} , \\ & \text{Take } \pi^{\star}(s, a) \propto \boldsymbol{d}_{s,a}^{\star} \quad \text{for all } s \in \mathcal{S}, \ a \in \mathcal{A} \end{aligned}$$

In Summary

- ► From Egocentric to Altruistic Agents
 - Agent A acts in (), impacting beneficiaries
 - \blacktriangleright Vector-valued (per-beneficiary) reward $\mathbf{R}(s, a)$
- Social planner's problem:
- Optimize welfare of value functions $\operatorname{argmax} W(V^{\pi}(s))$ Incorporate fairness into sequential learning problems
- KWIK-AF: A Model of Fair RL
- Adversarial flexibility
- Societal welfare objectives
- Tolerate no mistakes, allow bounded exploration
- Challenging model of learning, subsumes PAC-MDP
- Efficient Learning and Planning • Learn with E^4 : Poly(...) exploration budget Plan with convex programming on state-action measure ► Fair RL and classic RL are comparably difficult

